Analysis of Students' Intuitive Thinking Abilities in Solving Mathematical Problems on Integer Topics

https://doi.org/10.51574/kognitif.v6i1.4408

Authors

  • Noera Shikin Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi
  • Nizlel Huda Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi https://orcid.org/0000-0001-5276-3147
  • Ade Kumalasari Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi https://orcid.org/0000-0003-1862-6178

Keywords:

Intuitive Thinking Ability , Problem-Solving , Integers , Common Sense , Catalytic Inference , Power of Synthesis

Abstract

This study aims to analyze and describe students' intuitive thinking abilities in solving mathematical problems on the topic of integers. This research employs a qualitative descriptive method. One research subject (S1) will be selected using purposive sampling based on their ability to demonstrate initial indications of intuitive thinking, such as the accuracy and speed of their initial response to a problem. The research instrument consists of one integer problem-solving test question designed to assess intuitive thinking abilities. Data is collected through triangulation using the think-aloud technique during the problem-solving process, followed by a semi-structured interview to explore the subject's (S1) reasoning and intuitive thought processes. Data is analyzed qualitatively through the stages of data reduction, data presentation, and conclusion drawing. The results reveal that intuition, specifically the common-sense type, acts as a cognitive bridge that accelerates the emergence of ideas and the formulation of problem-solving strategies. This intuitive thinking characteristic is demonstrated through the application of systematic strategies, logical reasoning, and a strong reliance on prior learning experiences. These findings indicate that learning experiences can serve as a crucial foundation in forming effective mathematical intuition. Therefore, mathematics instruction should be designed to enrich student experiences through a variety of problem-solving tasks to develop students' intuitive thinking abilitie

Downloads

Download data is not yet available.

Author Biographies

Noera Shikin, Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi

Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi

Nizlel Huda, Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi

Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi

Ade Kumalasari, Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi

Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi

References

Badan Pengembangan dan Pembinaan Bahasa. (2025). Kamus Besar Bahasa Indonesia (KBBI) Daring. Kementerian Pendidikan, Kebudayaan, Riset, Dan Teknologi. https://kbbi.kemdikbud.go.id

Davita, P. W. C., & Pujiastuti, H. (2020). Anallisis Kemampuan Pemecahan Masalah Matematika Ditinjau dari Gender. Kreano, Jurnal Matematika Kreatif-Inovatif, 11(1), 110–117. https://doi.org/10.15294/kreano.v11i1.23601

Dewantara, A. H., & Saraswati, S. (2022). Analisis Berpikir Intuitif Siswa dalam Menyelesaikan Masalah Persentase. Didaktika : Jurnal Kependidikan, 15(1), 49–61. https://doi.org/10.30863/didaktika.v15i1.62

Evans, T., Klymchuk, S., Murphy, P. E. L., Novak, J., Stephens, J., & Thomas, M. (2021). Non-routine mathematical problem-solving: creativity, engagement, and intuition of STEM tertiary students. STEM Education, 1(4), 256–278. https://doi.org/10.3934/steme.2021017

Fatima, A. A., & Susanah. (2019). Profil Intuisi Siswa SMP dalam Pemecahan Masalah Matematika Ditinjau dari Gaya Kognitif Reflektif dan Impulsif. 8(3), 550–558.

Fischbein, E. (1987). Intuition in science and mathematics. Mathematics and Computers in Simulation, 30(4), 372. https://doi.org/10.1016/s0378-4754(98)90009-x

Hadamard, J. (1945). The Psychology of Invention in the Mathematical Field. In A Century in Books: Princeton University Press 1905–2005 (p. 22). https://doi.org/10.2307/2280144

Henden, G. (2004). Intuition and its Role in Strategic Thinking. Series of Dissertations, 1–189.

Lenaini, I. (2021). Teknik Pengambilan Sampel Purposive Dan Snowball Sampling. HISTORIS: Jurnal Kajian, Penelitian & Pengembangan Pendidikan Sejarah, 6(1), 33–39. http://journal.ummat.ac.id/index.php/historis

Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis. SAGE Publications.

Millah, A. S., Apriyani, Arobiah, D., Febriani, E. S., & Ramdhani, E. (2023). Analisis Data dalam Penelitian Tindakan Kelas. Jurnal Kreativitas Mahasiswa, 1(2), 140–153.

Musriroh, R. Z., Hidayanto, E., & Rahardi, R. (2021). Penalaran Spasial Matematis Dimensi Persepsi dan Visualisasi Kelas VIII dalam Pemecahan Masalah Geometri. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 6(11), 1774. https://doi.org/10.17977/jptpp.v6i11.15144

Mutia, Rochmad, & Isnarto. (2021). Pentingkah Sebuah Intuisi dalam Pembelajaran Matematika? Prisma, 4, 369–374. https://journal.unnes.ac.id/sju/index.php/prisma/

Prameswari, D. A., & Muniri, M. (2023). Karakteristik Berpikir Intuitif Siswa dalam Menyelesaikan Soal Matematika Ditinjau dari Kemampuan Matematika. Lattice Journal : Journal of Mathematics Education and Applied, 3(1), 79. https://doi.org/10.30983/lattice.v3i1.6554

Rifa’i, Y. (2023). Analisis Metodologi Penelitian Kulitatif dalam Pengumpulan Data di Penelitian Ilmiah pada Penyusunan Mini Riset. Cendekia Inovatif Dan Berbudaya, 1(1), 31–37. https://doi.org/10.59996/cendib.v1i1.155

Srimuliati, S., & Wahyuni, W. (2020). Kemampuan Berfikir Intuitif Mahasiswa Calon Guru dalam Penyelesaian Masalah Matematika. Jurnal Ilmiah Pendidikan Matematika Al Qalasadi, 4(2), 98–109. https://doi.org/10.32505/qalasadi.v4i2.2186

Zaporojets, K., Bekoulis, G., Deleu, J., Demeester, T., & Develder, C. (2021). Solving arithmetic word problems by scoring equations with recursive neural networks. Expert Systems with Applications, 174. https://doi.org/10.1016/j.eswa.2021.114704

Published

2026-02-03

How to Cite

Shikin, N., Huda, N., & Kumalasari, A. (2026). Analysis of Students’ Intuitive Thinking Abilities in Solving Mathematical Problems on Integer Topics. Kognitif: Jurnal Riset HOTS Pendidikan Matematika, 6(1), 96–108. https://doi.org/10.51574/kognitif.v6i1.4408

Most read articles by the same author(s)