A Systematic Literature Review: Chitosan-Based Membrane for Pollutant Removal from Wastewater

Authors

  • Muhammad Nur Alam Universitas Negeri Makassar

DOI:

https://doi.org/10.51574/hayyan.v2i3.4371

Keywords:

Membrane, Chitosan, Antifouling, Modification, Pollutant

Abstract

This review synthesizes research on development of synthesis techniques and modification methods for chitosan- based membranes, all application areas for pollutant separation to address inconsistencies in membrane performance and limited comparative analyses across pollutant classes. The review aimed to evaluate synthesis and chemical modification strategies, benchmark fabrication methods for mechanical strength and selectivity, identify nanomaterial integration approaches, compare pollutant removal efficiencies, and analyze challenges in membrane applications. A systematic analysis of studies from diverse synthesis methods—including phase inversion, electrospinning, and 3D printing—and modification approaches such as chemical crosslinking and nanomaterial incorporation was conducted. Findings reveal that nanocomposite and crosslinked membranes exhibit enhanced mechanical stability, permeability, and selective removal of heavy metals, dyes, and organic pollutants, with adsorption capacities reaching up to 1500 mg/g and oil-water separation efficiencies exceeding 98%. However, variability in synthesis protocols, limited regeneration data, and insufficient real wastewater evaluations constrain practical scalability. Integration of photocatalytic and antifouling modifications improves fouling resistance and operational longevity, though long-term durability remains underexplored. These results underscore the potential of tailored chitosan-based membranes for multifunctional pollutant separation while highlighting the need for standardized methodologies and comprehensive regeneration studies. The synthesis informs future research directions to optimize membrane design and facilitate broader implementation in sustainable water treatment technologies.

References

Abbas, M. A., Khan, M. Z., Saleem, M., Khan, A. U., Deen, K. M., Batool, M., Khan, A. L., Zhu, S., & Ahmad, N. M. (2023). Response surface methodology modeling correlation of polymer composite carbon nanotubes/chitosan nanofiltration membranes for water desalination. ACS ES&T water, 3 (5), 1406- 1421.

https://doi.org/10.1021/acsestwater.3c00107

Abdulhamid, M. A., Abdulhamid, M. A., & Abdulhamid, M. A. (2024). Rapid eco-friendly selective dye removal using modified chitosan-based sponges: Synthesis, characterization, and application. International Journal of Biological Macromoleculesnull, 133577-133577. https://doi.org/10.1016/j.ijbiomac.2024.133577

Aizat, M. A., & Aziz, F. (2019). Chitosan nanocomposite application in wastewater treatments. https://doi.org/10.1016/B978-0-12-813902-8.00012-5

AlAbduljabbar, F. A., Haider, S., Ali, F. A. A., Alghyamah, A., Al-Masry, W. A., Patel, R., & Mujtaba, I. M. (2021). Tio2 nanostructured coated functionally modified and composite electrospun chitosan nanofibers membrane for efficient photocatalytic degradation of organic pollutant in wastewater. Journal of materials research and technology, 15 null, 5197-5212. https://doi.org/10.1016/J.JMRT.2021.10.119

Ali, D. A., Ismail, G. G., Osman, A. I., AlReshaidan, S., & Al-Fatesh, A. S. (2024). Novel nanocomposite of carbonized chitosan-zinc oxide-magnetite for adsorption of toxic elements from aqueous solutions. ACS omega, 9 null, 47567-47584. https://doi.org/10.1021/acsomega.4c06541

Alrman, K. H., Alhariri, S., & Bakri, I. A. (2024). Ultrafiltration membrane based on chitosan/adipic acid: Synthesis, characterization and performance on separation of methylene blue and reactive yellow-145 from aqueous phase. Heliyonnull, . https://doi.org/10.1016/j.heliyon.2024.e31055

Alzahrani, E., Ahmed, R. A., & Alotaibi, R. S. (2020). Tio2nps embedded in chitosan membrane for efficient photodegradation of various dyes. Oriental journal of chemistry, 36 (1), 144-160. https://doi.org/10.13005/OJC/360120

Bandara, P. C., Nadres, E. T., & Rodrigues, D. F. (2019). Use of response surface methodology to develop and optimize the composition of a chitosan-polyethyleneimine-graphene oxide nanocomposite membrane coating to more effectively remove cr(vi) and cu(ii) from water.. ACS Applied Materials & Interfaces, 11 (19), 17784-17795. https://doi.org/10.1021/ACSAMI.9B03601

Bassyouni, M., Eteba, A., ElZahar, M. M. H., & Elshikhiby, M. Z. (2024). Utilization of biodegradable nanofiltration membrane for efficient removal of anionic textile dye. Egyptian Journal of Chemistry, 0 (0), 0-0.

https://doi.org/10.21608/ejchem.2024.296854.9846

Chaudhary, R., Banerjee, P., Gaur, N., Bajpai, S., & Joshi, K. (n.d.). Environmental implications of chitosan nanostructures. International Journal of Antibioticsnull, . https://doi.org/10.37591/ijab.v01i01.131610

Chelu, M., Musuc, A. M., Popa, M., & Moreno, J. M. C. (2023). Chitosan hydrogels for water purification applications. Gels, 9 null, . https://doi.org/10.3390/gels9080664

Croitoru, A., Ficai, A., Ficai, D., Trusca, R., Dolete, G., Andronescu, E., & Turculet, S. C. (2020). Chitosan/graphene oxide nanocomposite membranes as adsorbents with applications in water purification.. Materials, 13 (7), . https://doi.org/10.3390/MA13071687

Dhillon, A., & Kumar, D. (2018). Chitosan-based natural biosorbents: Novel search for water and wastewater desalination and heavy metal detoxification. https://doi.org/10.1007/978-3-319-68708-7_6

Du, X., Rashid, S. A., Abdullah, L. C., & Rahman, N. A. (2024). Preparation of electrospun cellulose acetate/chitosan membranes for efficient sorption of heavy metals from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspectsnull, 134698-134698. https://doi.org/10.1016/j.colsurfa.2024.134698

Feng, Z., Xu, Y., Ding, W., Wei, X., Hakkarainen, M., & Wu, M. (2023). Nano graphene oxide creates a fully biobased 3d-printed membrane with high-flux and anti-fouling oil/water separation performance. https://doi.org/10.2139/ssrn.4646121

Fu, C., Li, Y., & Guo, Z. (2024). Biomass chitosan-based complexes with superwettability for oil-water separation. Materials Today Chemistry, 40 null, 102265-102265.

https://doi.org/10.1016/j.mtchem.2024.102265

Gonçalves, J. O., Strieder, M. M., Silva, L. F., Reis, G. S. D., & Dotto, G. L. (2024). Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants. International Journal of Biological Macromolecules, . https://doi.org/10.1016/j.ijbiomac.2024.132307

Griggs, C. S., Mattei-Sosa, J. A., Gurtowski, L. A., Greenlee, L. F., & Abolhassani, M. (2018).

Chitosangraphene oxide membranes and process of making the same.

Ikhsan, S. N. W., Yusof, N., Aziz, F., Ismail, A. F., Shamsuddin, N., Jaafar, J., Salleh, W. N. W., Goh, P. S., Lau, W. J., & Misdan, N. (2022). Synthesis and optimization of superhydrophilic-superoleophobic chitosan– silica/hnt nanocomposite coating for oil– water separation using response surface methodology. Nanomaterials, 12 (20), 3673- 3673. https://doi.org/10.3390/nano12203673

Illiana, F. F., & Ariyanto, H. D. (2024). Development of chitosan/glutaraldehyde cross-linked film with silica addition as membrane material for sls rejection in detergent wastewater. Journal of Vocational Studies on Applied Research, 6 (1), 1-6. https://doi.org/10.14710/jvsar.v6i1.22145

Jawahire, S., Patil-Sankpal, P., Patil, A., Choudhari, P., & Rathod, S. (2024). Chitosan-based nanomaterials in decontamination of phenols and biphenyls. https://doi.org/10.1016/b978-0-443-21891-0.00013-5

Kavitha, E., Yuvaraj, K., & Kapoor, A. (2024). Chitosan-blended membranes for heavy metal removal from aqueous systems: A review of synthesis, separation mechanism, and performance. International Journal of Biological Macromolecules, 134996-134996. https://doi.org/10.1016/j.ijbiomac.2024.134996

Khabibi, Prasetya, N. B. A., Lusiana, R. A., Suyati, L., Nuryanto, R., Rohmah, L., & Khoirunnisa, I. A. (2022). Synthesis of citric acid-crosslinked chitosan membrane with zeolite filler and its application as cu(ii) ion separation membrane. Nucleation and Atmospheric Aerosolsnull, . https://doi.org/10.1063/5.0104558

Long, Q., Zhang, Z., Qi, G., Wang, Z., Chen, Y., & Liu, Z. (2020). Fabrication of chitosan nanofiltration membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater. ACS Sustainable Chemistry & Engineering, 8 (6), 2512-2522. https://doi.org/10.1021/ACSSUSCHEMENG.9B07026

Machodi, M. J., & Daramola, M. O. (2020). Synthesis of pes and pes/chitosan membranes for synthetic acid mine drainage treatment. Water SA, 46 (1), 114-122. https://doi.org/10.17159/WSA/2020.V46.I1.7891

Makaremi, M., Lim, C. X., Pasbakhsh, P., Lee, S. M., Goh, K. L., Chang, H., & Chan, E. S. (2016). Electrospun functionalized polyacrylonitrile–chitosan bi-layer membranes for water filtration applications. RSC Advances, 6 (59), 53882-53893. https://doi.org/10.1039/C6RA05942B

Mousavi, S. R., Asghari, M., Mahmoodi, N. M., & Salahshoori, I. (2023). Water decolorization and antifouling melioration of a novel peba1657/pes tfc membrane using chitosan- decorated graphene oxide fillers. Journal of environmental chemical engineering, 11 (3), 109955-109955. https://doi.org/10.1016/j.jece.2023.109955

Mu, T., Wang, Q. S., Cao, L., Zhu, X., & Zhao, Z. (2022). Preparation and characterization of a novel emphatically charged strengthened chitosan composite nanofiltration membrane. MATEC web of conferences, 358 null, 01025-01025. https://doi.org/10.1051/matecconf/202235801025

Nawawi, M. G. M., Zamrud, Z., & Alamaria, A. M. (2015). Novel hydrophilic chitosan and sago based membranes for pervaporation of organic-water mixtures. Advanced Materials Research, 1125 null, 250- 254.

https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.1125.250

Downloads

Published

2025-10-31 — Updated on 2025-12-10

Versions

Issue

Section

Articles