This is an outdated version published on 2025-10-31. Read the most recent version.

Antifouling Membrane Modification for Water Desalination: Study of Synthesis and Modification

Authors

  • Muhammad Nur Alam Universitas Negeri Makassar

DOI:

https://doi.org/10.51574/hayyan.v2i3.4370

Keywords:

Membrane, Antifouling, Desalination, Modification, Water flux, Salt Rejection

Abstract

One of the most important ingredients on earth that everyone needs is water. Consumption of large amounts of water is needed in various human activities such as agriculture, power generation, sanitation, drinking water needs and others. Membrane technology has developed into an indispensable platform technology for water purification, including seawater and brackish water desalination, due to its energy-saving and cost-effective qualities. However, membrane fouling, which results from the non-specific interaction between the membrane surface and foulants, severely impedes the effective deployment of membrane technology. Therefore, this review aims to provide a complete overview of the fabrication and modification of polymer or biopolymer based membranes as an antifouling membrane that focused on the method and performance of antifouling membrane, including water flux, salt rejection, and fouling properties. This review will first outline the main foulants and the primary mechanisms of membrane fouling, followed by a discussion of the development of antifouling membranes, including antifouling tactics and preparation methods. In the final site, the author will be show about the application, challenges and potential future of the antifouling membrane for water desalination.

References

Anjum, T., & Tamime, R. (2020). Mixed-Matrix Membranes Comprising of Polysulfone and Porous UiO-66 , Zeolite 4A , and Their Combination : Preparation , Removal of Humic Acid , and Antifouling Properties.

Antibacterial, C. (n.d.). Surface Functionalization of Polyethersulfone Anti-Biofouling Properties. 1–12. https://doi.org/10.3390/ma9050376

Asadollahi, M.; Bastani, D.; Musavi, S. A. (2017). Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination, 420, 330− 383.

Asempour, F., Emadzadeh, D., Matsuura, T., & Kruczek, B. (2018). Synthesis and characterization of novel Cellulose Nanocrystals-based Thin Film Nanocomposite membranes for reverse osmosis applications. Desalination, 439(March), 179–187. https://doi.org/10.1016/j.desal.2018.04.009

Azadi, F., Karimi-jashni, A., & Zerafat, M. M. (2020). Desalination of Brackish Water by Gelatin-Coated Magnetite Nanoparticles as a Novel Draw Solute in Forward Osmosis Process. Environmental Technology, 3330. https://doi.org/10.1080/09593330.2020.1717642

Bai, L., Liu, Y., Ding, A., Ren, N., Li, G., & Liang, H. (2019). Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Chemosphere, 217, 76–84. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.10.219

Batool, M., Shafeeq, A., Haider, B., & Ahmad, N. M. (2021). TiO 2 Nanoparticle Filler-Based Mixed-Matrix PES / CA Nanofiltration Membranes for Enhanced Desalination. Membranes, 11(433), 1–17. https://doi.org/https://doi.org/10.3390/membranes11060433

Chu, W., Gao, N., Krasner, S. W., Templeton, M. R., & Yin, D. (2012). Formation of halogenated C-, N-DBPs from chlor(am)ination and UV irradiation of tyrosine in drinking water. Environmental Pollution, 161, 8–14. https://doi.org/https://doi.org/10.1016/j.envpol.2011.09.037

Ding, M., Shi, W., Guo, L., Yi Leong, Z., Baji, A., & Ying Yang, H. (2017). Bimetallic Metal-Organic Frameworks Derived Porous Carbon Nanostructure for High Performance Membrane Capacitive Desalination. Journal of Materials Chemistry A. https://doi.org/10.1039/C7TA00339K

Fang, L.-F., Jeon, S., Kakihana, Y., Kakehi, J., Zhu, B.-K., Matsuyama, H., & Zhao, S. (2017). Improved antifouling properties of polyvinyl chloride blend membranes by novel phosphate based-zwitterionic polymer additive. Journal of Membrane Science, 528, 326–335. https://doi.org/https://doi.org/10.1016/j.memsci.2017.01.044

Goei, R., & Lim, T.-T. (2014). Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: Photocatalytic and anti-bacterial activities. Water Research, 59, 207–218. https://doi.org/https://doi.org/10.1016/j.watres.2014.04.025

Guo, Z.-B., Lin, Y.-L., Xu, B., Hu, C.-Y., Huang, H., Zhang, T.-Y., Chu, W.-H., & Gao, N.-Y. (2016). Factors affecting THM, HAN and HNM formation during UV-chlor(am)ination of drinking water. Chemical Engineering Journal, 306, 1180–1188. https://doi.org/https://doi.org/10.1016/j.cej.2016.08.051

Houtman, C. J. (2010). Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. Journal of Integrative Environmental Sciences, 7(4), 271–295. https://doi.org/10.1080/1943815X.2010.511648

Ji, H., Gu, M., Zhang, G., Yue, C., Yuan, Z., Liu, D., Shen, S., Zhou, X., & Wyman, I. (2022). Janus membrane prepared via one step depositing coatings onto PVDF/PDMS membrane for simultaneous antiwetting and antifouling in DCMD. Desalination, 539, 115964. https://doi.org/https://doi.org/10.1016/j.desal.2022.115964

Jia, P., Du, X., Chen, R., Zhou, J., Agostini, M., Sun, J., & Xiao, L. (2021). The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation. Molecules, 26(5343), 1–11. https://doi.org/https://doi.org/10.3390/molecules26175343

Jia, X., Cheng, Q., Tang, T., Xia, M., Zhou, F., Wu, Y., Cheng, P., Xu, J., Liu, K., & Wang, D. (2022). Facile plasma grafting of zwitterions onto nanofibrous membrane surface for improved antifouling properties and filtration performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129752. https://doi.org/https://doi.org/10.1016/j.colsurfa.2022.129752

Jiang, H., Zhao, Q., Wang, P., Ma, J., & Zhai, X. (2019). Improved separation and antifouling properties of PVDF gravity-driven membranes by blending with amphiphilic multi-arms polymer PPG-Si-PEG. Journal of Membrane Science, 588, 117148. https://doi.org/https://doi.org/10.1016/j.memsci.2019.05.072

Kadhom, M., Yin, J., & Deng, B. (2016). A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification. Membranes, 6(50), 1–12. https://doi.org/10.3390/membranes6040050

Kuzmenkov, D. M., Struchalin, P. G., Olkhovskii, A. V, Yunin, V. S., Kutsenko, K. V, & Balakin, B. V. (2021). Solar-Driven Desalination Using Nanoparticles. Energies, 14(5743), 1–10. https://doi.org/https://doi.org/10.3390/en1418574

Lawler, J. (2016). Incorporation of Graphene-Related Carbon Nanosheets in Membrane Fabrication for Water Treatment : A Review. https://doi.org/10.3390/membranes6040057

Liang, S., Gao, P., Gao, X., Xiao, K., & Huang, X. (2016). Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles. Frontiers of Environmental Science & Engineering, 10(6), 9. https://doi.org/10.1007/s11783-016-0875-5

Liang, Y., Yang, E., Kim, M., Kim, S., Kim, H., Byun, J., Yanar, N., & Choi, H. (2023). Lotus leaf-like SiO2 nanofiber coating on polyvinylidene fluoride nanofiber membrane for water-in-oil emulsion separation and antifouling enhancement. Chemical Engineering Journal, 452, 139710. https://doi.org/https://doi.org/10.1016/j.cej.2022.139710

Liu, Z., Ye, T., Xu, B., Zhang, T.-Y., Li, M.-Y., Hu, C.-Y., Tang, Y.-L., Zhou, X.-R., Xian, Q.-M., & Gao, N.-Y. (2022). Formation and control of organic chloramines and disinfection by-products during the degradation of pyrimidines and purines by UV/chlorine process in water. Chemosphere, 286, 131747. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131747

Loske, L. (2020). 2D Nanocomposite Membranes : Water Purification and Fouling Mitigation. Membranes, 10(6), 1–39. https://doi.org/10.3390/membranes10100295

Lu, X., Peng, Y., Qiu, H., Liu, X., & Ge, L. (2017). Anti-fouling membranes by manipulating surface wettability and their anti-fouling mechanism. Desalination, 413, 127–135. https://doi.org/https://doi.org/10.1016/j.desal.2017.02.022

Mayyahi, A. Al. (2018). TiO 2 Polyamide Thin Film Nanocomposite Reverses Osmosis Membrane for Water Desalination. Membranes, 8(66), 1–10. https://doi.org/10.3390/membranes8030066

Mo, Y., Xue, P., Yang, Q., Liu, H., & Zhao, X. (2021). Composite Slow-Release Fouling Release Coating Inspired by Synergistic Anti-Fouling Effect of Scaly Fish.

Nakagawa, K., Araya, S., Kunimatsu, M., & Yoshioka, T. (2018). Fabrication of Stacked Graphene Oxide Nanosheet Membranes Using Triethanolamine as a Crosslinker and Mild Reducing Agent for Water Treatment. Membranes, 8(130), 1–11. https://doi.org/10.3390/membranes8040130

Ngo, B. K. D., Lim, K. K., Stafslien, S. J., & Grunlan, M. A. (2019). Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration. Polymer Degradation and Stability, 163, 136–142. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2019.03.010

Ni, L., Meng, J., Li, X., & Zhang, Y. (2014). Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of Membrane Science, 451, 205–215. https://doi.org/https://doi.org/10.1016/j.memsci.2013.09.040

Nurman, S., & Ginting, B. (2022). Red Seaweed ( Gracilaria verrucosa Greville ) Based Polyurethane. Polymers, 14(1572), 1–16. https://doi.org/https://doi.org/10.3390/ polym14081572

Potla, C., Satish, D., Rajulapati, B., Ali, A., Anand, P., & Kola, K. (2018). Studies on removal of arsenic using cellulose acetate – zinc oxide nanoparticle mixed matrix membrane. International Nano Letters, 0123456789. https://doi.org/10.1007/s40089-018-0245-3

Ren, L.-F., Adeel, M., Li, J., Xu, C., Xu, Z., Zhang, X., Shao, J., & He, Y. (2018). Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane. Water Research, 135, 31–43. https://doi.org/https://doi.org/10.1016/j.watres.2018.02.011

Rong, Y., Yang, J., Huang, S., & Li, Y. (2022). Barium Hydroxide Nanoparticle – Phosphoric Acid System for. Crystals, 12(1171), 1–13. https://doi.org/https://doi.org/10.3390/cryst12081171

Rosas, I., Collado, S., Gutiérrez, A., & Díaz, M. (2014). Fouling mechanisms of Pseudomonas putida on PES microfiltration membranes. Journal of Membrane Science, 465, 27–33. https://doi.org/https://doi.org/10.1016/j.memsci.2014.04.002

Samree, K., Srithai, P., Kotchaplai, P., & Thuptimdang, P. (2020). Enhancing the Antibacterial Properties of PVDF Membrane by Hydrophilic Surface Modification Using Titanium Dioxide and Silver Nanoparticles.

Seyfollahi, M., Etemadi, H., Yegani, R., Rabiee, M., & Shokri, E. (2019). The effect of polyethylene glycol grafted nanodiamond on antifouling properties of cellulose acetate membrane for Removal of BSA from Contaminated Water. 4(1), 1–16. https://doi.org/10.22090/jwent.2019.01.001

Shen, S., Hao, Y., Zhang, Y., Zhang, G., Zhou, X., & Bai, R. B. (2018). Enhancing the Antifouling Properties of Poly ( vinylidene fl uoride ) ( PVDF ) Membrane through a Novel Blending and Surface-Grafting Modi fi cation Approach. https://doi.org/10.1021/acsomega.8b02569

Shen, Y., & Badireddy, A. R. (2021). A Critical Review on Electric Field-Assisted Membrane Processes : Implications for Fouling Control , Water Recovery , and Future Prospects.

Shokri, E., Shahed, E., Hermani, M., & Etemadi, H. (2021). Towards enhanced fouling resistance of PVC ultrafiltration membrane using modified montmorillonite with folic acid. Applied Clay Science, 200, 105906. https://doi.org/https://doi.org/10.1016/j.clay.2020.105906

Silva, T. A., Andrade, P. F., Segala, K., Silva, L. S. C., Silva, L. P., Nista, S. V. G., Mei, L. H. I., Durán, N., & Teixeira, M. F. S. (2017). Silver nanoparticles biosynthesis and impregnation in cellulose acetate membrane for anti-yeast therapy. African Journal of Biotechnology, 16(27), 1490–1500. https://doi.org/10.5897/AJB2017.16024

Tayefeh, A., Mousavi, S. A., Wiesner, M., & Poursalehi, R. (2015). Synthesis and Surface Characterization of Magnetite-Titania Nanoparticles / Polyamide Nanocomposite Smart RO Membrane. Procedia Materials Science, 11, 342–346. https://doi.org/10.1016/j.mspro.2015.11.114

Tiraferri, A., Kang, Y., Giannelis, E. P., & Elimelech, M. (2012). Highly Hydrophilic Thin-Film Composite Forward Osmosis Membranes Functionalized with Surface-Tailored Nanoparticles Highly Hydrophilic Thin-Film Composite Forward Osmosis Membranes Functionalized with Surface- Tailored Nanoparticles ACS Applied Materials. Applied Materials and Interface, 4(9), 5044–5053. https://doi.org/10.1021/am301532g

Torre-celeizabal, A., Garea, A., & Casado-coterillo, C. (2022). Chitosan : Polyvinyl alcohol based mixed matrix sustainable coatings for reusing composite membranes in water treatment : Fouling characterization. Chemical Engineering Journal Advances, 9, 100236. https://doi.org/10.1016/j.ceja.2021.100236

Unlu, D. (2020). Pervaporative Desalination of Water Using Hydroxypropyl methylcellulose / Polyvinylpyrrolidone Blend Membranes. 4(1), 35–43.

Wang, Z., Qin, Y., Xu, X., Sun, J., Shen, J., Ning, X., & Li, N. (2021). Laminated graphene oxide membrane for recovery of mercury containing wastewater by pervaporation. https://doi.org/10.1007/s13201-021-01453-x

Ward, L. M., Fickling, B. G., & Weinman, S. T. (2021). Effect of Nanopatterning on Concentration Polarization during Nanofiltration. Membrane, 11(12), 1–11. https://doi.org/10.3390/membranes11120961

Warsinger, D. M., Mistry, K. H., Nayar, K. G., Chung, H. W., & V, J. H. L. (2015). Entropy Generation of Desalination Powered by Variable Temperature Waste Heat. 17, 7530–7566. https://doi.org/10.3390/e17117530

Xie, W., Li, J., Sun, F., & Dong, W. (2020). Antifouling Ability of Hydrophilic PVDF-TiO 2 membrane Evaluated by Critical Flux and Threshold Flux. 01015.

Xing, J., Du, L., Quan, X., Luo, X., Snyder, S. A., & Liang, H. (2021). Combining chlor(am)ine-UV oxidation to ultrafiltration for potable water reuse: Promoted efficiency, membrane fouling control and mechanism. Journal of Membrane Science, 635, 119511. https://doi.org/https://doi.org/10.1016/j.memsci.2021.119511

Yasin, A. S., Mohamed, A. Y., Kim, D., Yoon, S., Ra, H., & Lee, K. (2021). Efficiency Enhancement of Electro-Adsorption Desalination Using Iron Oxide Nanoparticle-Incorporated Activated Carbon Nanocomposite. Micromachines, 12(1148), 1–13. https://doi.org/https://doi.org/10.3390/mi12101148

Zhang, R., Su, Y., & Zhao, X. (2016). Antifouling membranes for sustainable water purification: Strategies and mechanisms. August. https://doi.org/10.1039/C5CS00579E

Zhao, C., Song, T., Yu, Y., Qu, L., Cheng, J., Zhu, W., Wang, Q., Li, P., & Tang, W. (2020). Insight into the influence of humic acid and sodium alginate fractions on membrane fouling in coagulation-ultrafiltration combined system. Environmental Research, 191, 110228. https://doi.org/https://doi.org/10.1016/j.envres.2020.110228

Zhou, Z., Li, X., Shinde, D. B., Sheng, G., Lu, D., & Li, P. (2020). Tuning the Surface Structure of Polyamide Membranes Using Porous Carbon Nitride Nanoparticles for High-Performance Seawater Desalination. Membranes, 10(163), 1–12. https://doi.org/10.3390/membranes10080163

Downloads

Published

2025-10-31

Versions

Issue

Section

Articles