Bioactive Potential of Endophytic Fungi from the Genus Aspergillus: A Comprehensive Review of Secondary Metabolites and Their Biological Activities
DOI:
https://doi.org/10.51574/hayyan.v2i3.4222Keywords:
Endophytic Fungi, Genus Aspergillus, Secondary Metabolites, Biological ActivitiesAbstract
This review provides a comprehensive synthesis of current knowledge on the bioactive potential of endophytic fungi belonging to the genus Aspergillus, emphasizing their secondary metabolites and associated biological activities. A systematic literature search was conducted across major scientific databases, including Scopus, Web of Science, PubMed, ScienceDirect, and Google Scholar, covering publications from January 2020 to October 2025. Studies were selected based on inclusion criteria focusing on the isolation, metabolite characterization, and bioactivity evaluation of endophytic Aspergillus species. Relevant data on fungal species, host plants, metabolite classes, and biological functions were extracted, organized, and analyzed qualitatively using a thematic and comparative approach. The analysis revealed that Aspergillus species are prolific producers of diverse secondary metabolites such as alkaloids, polyketides, terpenoids, xanthones, and peptides, exhibiting a broad range of biological activities including antimicrobial, antioxidant, anticancer, anti-inflammatory, antifungal, and antiparasitic effects. Key compounds such as gliotoxin, terrein, and vitexin demonstrate strong pharmacological properties and highlight the genus’s biotechnological significance. Overall, endophytic Aspergillus species represent an underexploited reservoir of natural bioactive compounds with high pharmaceutical and industrial relevance. Future research integrating genomics, metabolomics, and bioengineering is essential to unlock their full biosynthetic potential and advance sustainable drug discovery.
References
Adebayo, E. A., Azeez, M. A., Alao, M. B., Oke, A. M., & Aina, D. A. (2021). Fungi as veritable tool in current advances in nanobiotechnology. Heliyon, 7(11), e08480. https://doi.org/10.1016/j.heliyon.2021.e08480
Adeleke, B. S., & Babalola, O. O. (2021). Pharmacological potential of fungal endophytes associated with medicinal plants: A review. Journal of Fungi, 7(2), 1–16. https://doi.org/10.3390/jof7020147
Alfaifi, M. Y., Abuamara, T. M., Amer, M. E., Nasr, M. S., Abd-Elhay, W. M., EI-Moselhy, L. E., Albasyoni Gomah, T., Eldin Elbehairi, S. I., Ali Ali, H., & Fahmy Mohamed, A. (2020). Use of Secondary Metabolites Derived from Aspergillus Species as Anticancer Agents and Related Histological and Genetic Alterations: In Vitro Study. Journal of Cytology and Histology, 11(1), 1–7. https://doi.org/10.37421/jch.2020.11.552
Alsharif, S. S., & Sajer, B. H. (2025). Potential of Aspergillus flavus Secondary Metabolites in Breast Cancer Treatment In-silico Study of Fungal Compounds Targeting Tumor Suppressor Proteins. Journal of Contemporary Medical Sciences, 11(2), 105–119. https://doi.org/10.22317/jcms.v11i2.1777
Alzahrani, K. K. (2025). Unveiling the distribution and research patterns of Aspergillus spp. in Saudi Arabia: a systematic and bibliometric analysis. Frontiers in Microbiology, 16(August), 1–22. https://doi.org/10.3389/fmicb.2025.1638271
Brandt, S. C., Ellinger, B., van Nguyen, T., Harder, S., Schlüter, H., Hahnke, R. L., Rühl, M., Schäfer, W., & Gand, M. (2020). Aspergillus sydowii: Genome Analysis and Characterization of Two Heterologous Expressed, Non-redundant Xylanases. Frontiers in Microbiology, 11(September). https://doi.org/10.3389/fmicb.2020.573482
Elghaffar, R. Y. A., Amin, B. H., Hashem, A. H., & Sehim, A. E. (2022). Promising Endophytic Alternaria alternata from Leaves of Ziziphus spina-christi: Phytochemical Analyses, Antimicrobial and Antioxidant Activities. Applied Biochemistry and Biotechnology, 194(9), 3984–4001. https://doi.org/10.1007/s12010-022-03959-9
Ghazi-Yaker, A., Kraak, B., Houbraken, J., Nabti, E. H., Cruz, C., Saadoun, N., & Houali, K. (2024). In Vitro Antioxidant and Antibacterial Activities of Ethyl Acetate Extracts of Ziziphus lotus Leaves and Five Associated Endophytic Fungi. Microorganisms, 12(12), 1–22. https://doi.org/10.3390/microorganisms12122671
Greeff-Laubscher, M. R., Beukes, I., Marais, G. J., & Jacobs, K. (2020). Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins. Mycology, 11(2), 105–117. https://doi.org/10.1080/21501203.2019.1604575
Hagag, A., Abdelwahab, M. F., Abd El-kader, A. M., & Fouad, M. A. (2022). The endophytic Aspergillus strains: A bountiful source of natural products. Journal of Applied Microbiology, 132(6), 4150–4169. https://doi.org/10.1111/jam.15489
Ibrahim, S. R. M., Mohamed, H. M., Aljahdali, A. S., Murshid, S. S. A., Mohamed, S. G. A., Abdallah, H. M., & Mohamed, G. A. (2025). Aspergillus fumigatus from Pathogenic Fungus to Unexplored Natural Treasure: Changing the Concept. Journal of Microbiology and Biotechnology, 35, 11–13. https://doi.org/10.4014/jmb.2411.11082
Ibrahim, S. R. M., Mohamed, S. G. A., Alsaadi, B. H., Althubyani, M. M., Awari, Z. I., Hussein, H. G. A., Aljohani, A. A., Albasri, J. F., Faraj, S. A., & Mohamed, G. A. (2023). Secondary Metabolites, Biological Activities, and Industrial and Biotechnological Importance of Aspergillus sydowii. Marine Drugs, 21(8). https://doi.org/10.3390/md21080441
Li, W., Tan, M., Ju, S., He, F., Wu, J., Wei, Y., Wen, J., Li, B., & Huang, X. (2025). Three new polyketones from mangrove endophytic fungus aspergillus sp. HMGh1–1 and their insecticidal activity. Fitoterapia, 186(July), 106803. https://doi.org/10.1016/j.fitote.2025.106803
Munshi, M., Zilani, M. N. H., Islam, M. A., Biswas, P., Das, A., Afroz, F., & Hasan, M. N. (2022). Novel compounds from endophytic fungi of Ceriops decandra inhibit breast cancer cell growth through estrogen receptor alpha in in-silico study. Informatics in Medicine Unlocked, 32(March), 101046. https://doi.org/10.1016/j.imu.2022.101046
Noman, E., Al-Shaibani, M. M., Bakhrebah, M. A., Almoheer, R., Al-Sahari, M., Al-Gheethi, A., Radin Mohamed, R. M. S., Almulaiky, Y. Q., & Abdulaal, W. H. (2021). Potential of anti-cancer activity of secondary metabolic products from marine fungi. Journal of Fungi, 7(6), 1–27. https://doi.org/10.3390/jof7060436
Sedjati, S., Ambariyanto, A., Trianto, A., Supriyantini, E., Ridlo, A., Bahry, M. S., Jezzi, R. R., & Sany, M. F. (2020). Antimicrobial Activity of Fungal Extract of The Aspergillus flavus from Hiri Island, North Maluku to Pathogenic Bacteria. Jurnal Kelautan Tropis, 23(1), 127. https://doi.org/10.14710/jkt.v23i1.7049
Vitale, G. A., Coppola, D., Esposito, F. P., Buonocore, C., Ausuri, J., Tortorella, E., & de Pascale, D. (2020). Antioxidant molecules from marine fungi: Methodologies and perspectives. Antioxidants, 9(12), 1–35. https://doi.org/10.3390/antiox9121183
Wang, Z., Zhao, M., Li, C., Yu, Y., Gong, Z., Kong, F., & Li, C. (2025). Recent Advances in Secondary Metabolites from Marine Aspergillus. Marine Drugs, 23(10), 1–30. https://doi.org/10.3390/md23100400
Wen, J., Okyere, S. K., Wang, J., Huang, R., Wang, Y., Liu, L., Nong, X., & Hu, Y. (2023). Endophytic Fungi Isolated from Ageratina adenophora Exhibits Potential Antimicrobial Activity against Multidrug-Resistant Staphylococcus aureus. Plants, 12(3). https://doi.org/10.3390/plants12030650
Zakaria, L. (2024). An Overview of Aspergillus Species Associated with Plant Diseases. Pathogens, 13(9). https://doi.org/10.3390/pathogens13090813
Zakariyah, R. F., Ajijolakewu, K. A., Ayodele, A. J., Folami-A, B. I., Samuel, E. P., Otuoze, S. O., Abdulrauf, L. B., & Ahmed, R. N. (2024). Progress in endophytic fungi secondary metabolites: biosynthetic gene cluster reactivation and advances in metabolomics. Bulletin of the National Research Centre, 48(1). https://doi.org/10.1186/s42269-024-01199-x