Kinetics of Phenol Degradation Using TiO₂/Zeolite Composite
DOI:
https://doi.org/10.51574/hayyan.v2i3.4138Keywords:
photocatalyst, degradation, phenol, composite, zeoliteAbstract
Phenol is a hazardous organic pollutant commonly found in industrial wastewater and is difficult to degrade through conventional treatment methods, thus requiring more effective and sustainable approaches. Photocatalytic degradation using TiO₂ has been widely explored; however, its performance is limited by rapid electron–hole recombination and low surface area. Combining TiO₂ with zeolite enhances adsorption capability and increases the availability of active sites, offering a promising strategy to improve photocatalytic efficiency. This study aims to analyze the kinetic behavior of phenol degradation using a TiO₂/zeolite composite and to determine the optimum irradiation time based on a pseudo-first-order kinetic model. Irradiation times of 15, 30, 45, 60, and 75 minutes were applied, and phenol concentrations were measured using UV–Vis spectrophotometry at 270,20 nm. The results show rapid degradation during the first phase (15-30 minutes), with removal efficiency increasing from 83,014% to 87,315%. After 30 minutes, the degradation rate becomes nearly constant, indicating the attainment of photocatalytic dynamic equilibrium. The -ln(Ct/C0) plot reveals two distinct reaction phases: an initial high-rate phase followed by a plateau phase. Therefore, 30 minutes is identified as the most efficient irradiation time, representing the point at which maximum degradation is achieved before the reaction rate significantly decreases. These findings provide meaningful insight into the photocatalytic kinetics of TiO₂/zeolite composites and support their potential application in phenolic wastewater treatment.
References
Ahmaruzzaman, M., Mishra, S. R., Gadore, V., Yadav, G., Roy, S., Bhattacharjee, B., Bhuyan, A., Hazarika, B., Darabdhara, J., & Kumari, K. (2024). Phenolic compounds in water: From toxicity and source to sustainable solutions – An integrated review of removal methods, advanced technologies, cost analysis, and future prospects. Journal of Environmental Chemical Engineering, 12(3), 112964. https://doi.org/10.1016/j.jece.2024.112964
Andari, N. D., & Wardhani, S. (2018). Fotokatalis TiO2-Zeolit untuk Degradasi Metilen Biru. Chemistry Progress, 7(1), 9–14.
Armaković, S., & Armaković, S. (2025). Zeolite-Supported TiO2 for Enhanced Photocatalytic Performance in Environmental Applications: A Review. Catalysts, 15(2), 174. https://doi.org/10.3390/catal15020174
Dang, T. T. T., Le, S. T. T., Channei, D., Khanitchaidecha, W., & Nakaruk, A. (2016). Photodegradation mechanisms of phenol in the photocatalytic process. Research on Chemical Intermediates, 42(6), 5961–5974. https://doi.org/10.1007/s11164-015-2417-3
Direktorat Pengendalian Pencemaran Udara. (2023). Laporan Kinerja Direktorat Pengendalian Pencemaran Udara Direktorat Jenderal Pengendalian Pencemaran dan Kerusakan Lingkungan Tahun 2022. In Direktorat Pengendalian Pencemaran Udara (Vol. 53). https://tanamanpangan.pertanian.go.id/assets/front/uploads/document/LAKIN DJTP 2022_UPDATE ATAP (2).pdf
Fauzi, W. P., Kurniawan, R., Sudiono, S., Prasetyo, N., & Syoufian, A. (2024). Photodegradation of Phenol under Visible Light Irradiation Using Cu-N-codoped ZrTiO4 Composite as a High-Performance Photocatalyst. Indonesian Journal of Chemistry, 24(2), 519. https://doi.org/10.22146/ijc.90365
Kholidah, K., Wahyuni, E. T., & Sugiharto, E. (2021). Fotodegradasi Terkatalisis TiO2-H2O2 pada Pengolahan Limbah Cair Industri Mie Soun. Jurnal Teknik Kimia Dan Lingkungan, 5(2), 164–174. https://doi.org/10.33795/jtkl.v5i2.225
Liu, N., Qi, R., Sun, X., Kawazoe, N., Chen, G., & Yang, Y. (2022). Synthesis and characterization of 3D-zeolite–modified TiO2-based photocatalyst with synergistic effect for elimination of organic pollutant in wastewater treatment. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1009045
Liu, Z., Qian, M., Cheng, X., & Liu, Z. (2024). Recent Advances in the Photocatalytic Degradation of Phenol over Bi-Based Oxide Catalysts. Processes, 12(9), 1799. https://doi.org/10.3390/pr12091799
Mohd, A. (2022). Presence of phenol in wastewater effluent and its removal: an overview. International Journal of Environmental Analytical Chemistry, 102(6), 1362–1384. https://doi.org/10.1080/03067319.2020.1738412
Pareek, C. (2021). Synthesis of Phenols and Their Uses. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), 10(7). https://doi.org/10.15680/IJIRSET.2021.1007339
Putri, S. E., Pratiwi, D. E., & Ria, T. A. (2025). KINETICS PHOTODEGRADATION OF METHYLENE BLUE. September, 224–229.
Saputera, W. H., Putrie, A. S., Esmailpour, A. A., Sasongko, D., Suendo, V., & Mukti, R. R. (2021). Technology Advances in Phenol Removals: Current Progress and Future Perspectives. Catalysts, 11(8), 998. https://doi.org/10.3390/catal11080998
Seloglu, M., Orhan, R., Selen, V., & Dursun, G. (2024). Analysis of Photocatalytic Degradation of Phenol by Zinc Oxide Using Response Surface Methodology. ChemistryOpen, 13(6). https://doi.org/10.1002/open.202300238
Setyaingtyas, T., Riyani, K., Dwiasi, D. W., & Rahayu, E. B. (2018). Degradasi Fenol pada Limbah Cair Batik Menggunakan Reagen Fenton Dengan Sinar UV. Jurnal Kimia VALENSI, 4(1), 26–33. https://doi.org/10.15408/jkv.v4i1.7054
Side, S., & Putri, S. E. (2020). Determination of the Effectiveness of Phenol Degradation Types Using Zeolite/TiO2 Composites. International Conference on Science and Advanced Technology (ICSAT), 51, 1358–1363. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=2SqihoQAAAAJ&pagesize=100&citation_for_view=2SqihoQAAAAJ:k_IJM867U9cC
Suharto, Septiyawati, F., & Yanuarita S B, D. (2018). Kajian Kualitas Air dan Indeks Pencemaran Wilayah Pesisir Kota Makassar. Jurnal Pengelolaan Perairan, 1(x), 19–26. https://core.ac.uk/download/pdf/270260245.pdf
Tsaplin, D. E., Ostroumova, V. A., Kulikov, L. A., Zolotukhina, A. V., Sadovnikov, A. A., Kryuchkov, M. D., Egazaryants, S. V., Maksimov, A. L., Wang, K., Luo, Z., & Naranov, E. R. (2023). Synthesis and Investigation of Zeolite TiO2/Al-ZSM-12 Structure and Properties. Catalysts, 13(2), 216. https://doi.org/10.3390/catal13020216
Wang, X., Teo, S. H., Shamsuddin, M. R., & Wid, N. (2025). Photocatalytic Degradation of Organic Pollutants and Microplastics Using Ag/TiO2: Recent Advances in Mechanism, Synthesis and Properties. Water, Air, and Soil Pollution, 236(1), 1–25. https://doi.org/10.1007/s11270-024-07669-2
Xue, H., Lv, G., & Zhang, T. (2025). Fly Ash-based X Zeolite-TiO2 Composite Catalysts in Photocatalytic Performance. Water, Air, & Soil Pollution, 236(12), 822. https://doi.org/10.1007/s11270-025-08411-2