Characterization of Active Carbon Pineapple Skin (Ananas comosus) as Absorbent of Heavy Metal Copper (Cu) with NaOH and NH4OH Activators
DOI:
https://doi.org/10.51574/hayyan.v2i3.3524Keywords:
Activated Carbon, pineapple peel, activatorAbstract
This research aims to evaluate the potential of pineapple peel as a raw material for making activated carbon, as well as comparing the effectiveness of NaOH and NH4OH activators in the activation process. Activated carbon is produced through a carbonization and chemical activation process, then its quality is tested based on the Indonesian National Standard (SNI) 06-3730-1995. The research results show that activated carbon from pineapple peel meets SNI standards in terms of ash content and water content, with each not exceeding the maximum limits of 10% and 15%. The yield of activated carbon activated with NH4OH (87.5%) was higher than NaOH (79.4%). In addition, the water content of activated carbon with NH4OH (1.07%) is lower than NaOH (1.42%). Although the iodine absorption capacity of activated carbon from pineapple peel is still below the minimum SNI standard (750 mg/g), NH4OH shows better results in adsorption of the heavy metal Cu (0.0041 mg/g) than NaOH (0.0015 mg/g ). The FTIR spectrum shows the presence of diverse functional groups, indicating complex chemical interactions. Based on the results of this research, pineapple peel has good potential as a raw material for activated carbon, with NH4OH as a more effective activator in improving the quality and adsorption ability of activated carbon.
References
Aisyah, I. (2019). Multi Manfaat Arang dan Asap Cair dari Limbah Biomassa. Yogyakarta: Deepublish Publisher.
Desiani, E. (2021). Sintesis Dan Karakterisasi Fe3o4-Tio2/Karbon Aktif Untuk Absorpsi Ion Logam Cu (Ii) Dan Cd (Ii) Dalam Larutan.
Esterlita, M. O., & Herlina, N. (2015). Pengaruh penambahan aktivator ZnCl2, KOH da H3PO4 dalam pembuatan karbon aktif dari pelepah aren (Arenga Pinnata). Jurnal Teknik Kimia USU, 4(1), 47-52.
Kusdarini, E., Budianto, A., & Ghafarunnisa, D. (2017). Produksi Karbon Aktif Dari Batubara Bituminus Dengan Aktivasi Tunggal H3Po4, Kombinasi H3Po4-Nh4Hco3 dan Termal. Reaktor, 17 (2), 74.
Kumar, P., & Reddy, M. M. (2018). Activated Carbon: Types, Applications, and Regeneration. Journal of Environmental Management, 223, 1-12.
Novia, L., & Putra, A. (2022). Pengujian Aproksimat Karbon Aktif Kulit Nanas (Ananas comosus L. Merr). CHEDS: Journal of Chemistry, Education, and Science, 6(2), 139-145.
Nurhayati, Nelwida dan B. (2014). Perubahan Kandungan Protein Dan Serat Kasar Kulit Nanas Yang Difermentasi Dengan Plain Yoghurt. Jurnal Ilmiah Ilmu-Ilmu Peternakan, 17(1), 31–38.
Oko, S., Mustafa, M., Kurniawan, A., & Palulun, E. S. B. (2021). Pengaruh suhu dan konsentrasi aktivator hcl terhadap karakteristik karbon aktif dari ampas kopi. METANA, 17(1), 15-21.
Permatasari, A. R., Khasanah, L. U., & Widowati, E. (2014). Karakterisasi karbon aktif kulit singkong (Manihot utilissima) dengan variasi jenis aktivator. Jurnal Teknologi Hasil Pertanian, 7(2), 70-75.
Sahara, E., Dahliani, N. K., & Manuaba, I. B. P. (2017). Pembuatan dan karakterisasi arang aktif dari batang tanaman gumitir (Tagetes Erecta) dengan aktivator NaOH. Jurnal Kimia, 11(2), 174-180.
Rusli. (2023). Potensi Karbon Aktif Kulit Nanas (Ananas Comosus) Sebagai Absorben Logam Berat Pb Dengan Perbandingan Aktivator NaOH dan HCl. [Skripsi]. Bulukumba: Universitas Muhammadiyah Bulukumba.
Sofyan, A., Kurniaty, N., & Wisnuwardhani, H. A. (2020). Pembuatan dan Karakterisasi Karbon Aktif dari Kulit Nanas (Ananas comosus (L.) Merr) Menggunakan Aktivator H2SO4. Prosiding Farmasi, 6(2), 768-773