A Review: Nanofiller for Chitosan Membrane in DMFC Application

Authors

  • Muhammad Nur Alam Universitas Negeri Makassar

DOI:

https://doi.org/10.51574/hayyan.v2i2.3401

Keywords:

Chitosan, Membrane, Fuel Cell, Energy

Abstract

Chitosan, a biodegradable polysaccharide derived from chitin, is emerging as a sustainable, low-cost alternative to perfluorinated membranes (like Nafion®) in Direct Methanol Fuel Cells (DMFCs). However, pristine chitosan membranes suffer from low proton conductivity (~10⁻³ S/cm), excessive methanol crossover, limited thermal and oxidative stability, and poor mechanical strength. To address these challenges, significant attention has focused on reinforcing chitosan matrices with nanofillers—such as nanosilica, titanium dioxide (TiO₂), carbon nanotubes (CNTs), graphene oxide (GO), and sulfur- or phosphorous-doped nanoparticles—to tune hydrophilicity, proton transport pathways, and mechanical integrity.This review evaluates synthesis strategies, nanofiller types, and their concentration effects on key membrane properties. Fabrication techniques center on dispersion of nanofillers into chitosan–acid solutions, casting, drying, and crosslinking with agents like glutaraldehyde or tetraethyl orthosilicate (TEOS). Characterizations include SEM/TEM imaging for morphology, mechanical testing for tensile strength and elongation, proton conductivity via electrochemical impedance spectroscopy, methanol permeability assays, and thermal/oxidative resilience through TGA and Fenton’s reagent exposure.
Findings demonstrate that silica and TiO₂ nanocomposites can elevate proton conductivity to ~10⁻² S/cm, while reducing methanol permeability to the order of 10⁻⁷ cm²/s. Conductive carbon nanofillers (CNTs, GO) introduced interconnected proton channels, further enhancing conductivity, though at potential cost to homogeneity.

References

Rosli, R.E., et al. (2020). Review of chitosan-based polymers as proton exchange membranes. International Journal of Hydrogen Energy, 45(34), 17441–17459.

Zhang, J., et al. (2018). Graphene oxide-chitosan membranes for DMFCs. Journal of Membrane Science, 564, 199–208.

Abdullahi, I., et al. (2022). Sulfonated chitosan–TEOS composite membranes. Polymer Testing, 108, 107456.

Singh, M.K., & Ghosh, P.C. (2019). Nafion-silica membranes for DMFC. Renewable Energy, 135, 1371–1381.

Wahid, M.A., et al. (2021). Chitosan-based proton exchange membranes. Materials Today: Proceedings, 42, 2137–2143.

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632.

Ismail, A.F., et al. (2019). Nanocomposite membranes for DMFC. International Journal of Energy Research, 43(2), 769–788.

Mousa, H.M., et al. (2020). SiO₂ nanofillers in polymer membranes. Journal of Industrial and Engineering Chemistry, 89, 222–234.

Zhang, L., et al. (2021). TiO₂-enhanced chitosan membranes. Journal of Applied Polymer Science, 138(17), e50261.

Liew, K.W., et al. (2020). CNT-based biopolymer membranes. Carbohydrate Polymers, 234, 115879.

Lee, S.Y., et al. (2018). Proton conducting pathways in GO-chitosan membranes. Electrochimica Acta, 283, 1754–1763.

Sani, N.A.A., et al. (2017). Glutaraldehyde crosslinking in chitosan membranes. Journal of Membrane Science, 544, 202–212.

Mahalingam, S., et al. (2019). TEOS crosslinking for mechanical enhancement. Polymer Bulletin, 76(7), 3735–3749.

Hosseini, S.M., et al. (2020). Surface-modified nanofillers in PEMs. Membranes, 10(3), 55.

Al-Saadi, A.A., et al. (2021). Nanofiller-functionalized membranes for energy applications. Energy Reports, 7, 1734–1743.

Nuryono, N., et al. (2023). Functionalized carbon nanofillers in chitosan membranes for enhanced DMFC performance. Journal of Polymer Research, 30(2), 150–162.

Chen, R., et al. (2021). Influence of sulfonated graphene oxide on the conductivity and stability of chitosan-based membranes. Materials Chemistry and Physics, 263, 124425.

Liu, Y., et al. (2020). Enhancing proton conductivity of chitosan membranes via incorporation of ionic liquids and TiO₂ nanoparticles. International Journal of Hydrogen Energy, 45(54), 29730–29741.

Ahmad, M.S., et al. (2022). Bio-nanocomposite membranes derived from chitosan and cellulose nanocrystals for fuel cell applications. Carbohydrate Polymers, 277, 118876.

Suryani, D., & Kurniawan, A. (2024). Development of hybrid chitosan membranes for portable DMFCs. Indonesian Journal of Materials Science, 12(1), 33–47.

Wang, T., et al. (2019). Real-time testing of proton exchange membranes in DMFC stacks. Fuel Cells, 19(5), 618–628.

Othman, M.H.D., et al. (2021). Overview of ionic liquids in polymer electrolyte membranes. Membranes, 11(2), 121.

Hossain, M.A., et al. (2020). Integration of TEOS and GO into chitosan membrane matrix for fuel cell use. Journal of Membrane Science and Research, 6(4), 295–305.

Lim, S.H., et al. (2023). Methanol permeability reduction via surface-tailored silica nanoparticles in chitosan matrix. Journal of Applied Polymer Science, 140(6), 52714.

Kumari, A., et al. (2018). Performance comparison of Nafion and chitosan-based nanocomposite membranes in direct methanol fuel cells. Journal of Power Sources, 396, 715–723.

Heard, P. J. (2005). Main Group Dithiocarbamate Complexes. In Progress in inorganic chemistry (p.

1). Wiley. https://doi.org/10.1002/0471725587.ch1

Ji, C., Zhou, Y., Leblanc, R. M., & Peng, Z. (2020). Recent Developments of Carbon Dots in Biosensing: A Review [Review of Recent Developments of Carbon Dots in Biosensing: A Review]. ACS Sensors, 5(9), 2724. American Chemical Society. https://doi.org/10.1021/acssensors.0c01556

Johnson, A., Curtis, R. M., & Wallace, K. J. (2019). Low Molecular Weight Fluorescent Probes (LMFPs) to Detect the Group 12 Metal Triad. Chemosensors, 7(2), 22. https://doi.org/10.3390/chemosensors7020022

Kilic, N. M., Singh, S., Keles, G., Cinti, S., Kurbanoğlu, S., & Demirkol, D. O. (2023). Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors [Review of Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors]. Biosensors, 13(6), 622. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/bios13060622

Liu, W., Chen, J., & Xu, Z. (2020). Fluorescent probes for biothiols based on metal complex.

Coordination Chemistry Reviews, 429, 213638. https://doi.org/10.1016/j.ccr.2020.213638

Mascini, M., & Tombelli, S. (2008). Biosensors for biomarkers in medical diagnostics [Review of Biosensors for biomarkers in medical diagnostics]. Biomarkers, 13, 637. Taylor & Francis. https://doi.org/10.1080/13547500802645905

McCourt, K., Cochran, J. P., Abdelbasir, S. M., Carraway, E. R., Tzeng, T., Tsyusko, O. V., & Vanegas,

D. (2022). Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors [Review of Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors]. Biosensors, 12(12), 1082. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/bios12121082

Mukherjee, A., & Sadler, P. J. (2009). Metals in Medicine: Therapeutic Agents. In Wiley Encyclopedia of Chemical Biology (p. 1). https://doi.org/10.1002/9780470048672.wecb333

Noah, N. M., & Ndangili, P. M. (2019). Current Trends of Nanobiosensors for Point-of-Care Diagnostics [Review of Current Trends of Nanobiosensors for Point-of-Care Diagnostics]. Journal of Analytical Methods in Chemistry, 2019, 1. Hindawi Publishing Corporation. https://doi.org/10.1155/2019/2179718

Noah, N. M., & Ndangili, P. M. (2021). Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2112.04740

Odularu, A. T., & Ajibade, P. A. (2019). Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications [Review of Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications]. Bioinorganic Chemistry and Applications, 2019, 1. Hindawi Publishing Corporation. https://doi.org/10.1155/2019/8260496

Pasinszki, T., Krebsz, M., Tùng, T. T., & Lošić, D. (2017). Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis [Review of Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis]. Sensors, 17(8), 1919. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/s17081919

Peled, A., Pevzner, A., Soroka, H. P., & Patolsky, F. (2014). Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors. Journal of Nanobiotechnology, 12(1). https://doi.org/10.1186/1477-3155-12-7

Pérez‐López, B., & Merkoçi, A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technology, 22(11), 625. https://doi.org/10.1016/j.tifs.2011.04.001

Perfézou, M., Turner, A., & Merkoçi, A. (2011). Cancer detection using nanoparticle-based sensors [Review of Cancer detection using nanoparticle-based sensors]. Chemical Society Reviews, 41(7), 2606. Royal Society of Chemistry. https://doi.org/10.1039/c1cs15134g

Rabbani, M., Hoque, M. E., & Mahbub, Z. B. (2020). Nanosensors in biomedical and environmental applications: Perspectives and prospects. In Elsevier eBooks (p. 163). Elsevier BV. https://doi.org/10.1016/b978-0-12-820702-4.00007-6

Reichert, D. E., Lewis, J. S., & Anderson, C. J. (1999). Metal complexes as diagnostic tools. Coordination Chemistry Reviews, 184(1), 3. https://doi.org/10.1016/s0010-8545(98)00207-0

Saiyed, T. A., Adeyemi, J. O., & Onwudiwe, D. C. (2021). The structural chemistry of zinc(ii) and nickel(ii) dithiocarbamate complexes. Open Chemistry, 19(1), 974.

https://doi.org/10.1515/chem-2021-0080

Sesay, A. M., Tervo, P., & Tikkanen, E. (2017). Biomarkers in Health Care (p. 17). https://doi.org/10.1002/9781119065036.ch2

Sohail, U., Ullah, F., Arfan, N. H. B. Z., Hamid, M. H. S. A., Mahmood, T., Sheikh, N. S., & Ayub, K. (2023). Transition Metal Sensing with Nitrogenated Holey Graphene: A First-Principles Investigation. Molecules, 28(10), 4060. https://doi.org/10.3390/molecules28104060

Tan, Y. S., Yeo, C. I., Tiekink, E. R. T., & Heard, P. J. (2021). Dithiocarbamate Complexes of Platinum Group Metals: Structural Aspects and Applications. Inorganics, 9(8), 60.

https://doi.org/10.3390/inorganics9080060

Teeuwen, P. C. P., Melissari, Z., Senge, M. O., & Williams, R. M. (2022). Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers [Review of Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers]. Molecules, 27(20), 6967. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules27206967

Tóth, É., Helm, L., & Merbach, A. E. (2003). Metal Complexes as MRI Contrast Enhancement Agents.

In Elsevier eBooks (p. 841). Elsevier BV. https://doi.org/10.1016/b0-08 043748-6/09007-1

Udhayakumari, D., Suganya, S., & Velmathi, S. (2013). Thiosemicabazone based fluorescent chemosensor for transition metal ions in aqueous medium. Journal of Luminescence, 141, 48. https://doi.org/10.1016/j.jlumin.2013.03.023

Willander, M., Tahira, A., & Ibupoto, Z. H. (2017). Potentiometric Biosensors Based on Metal Oxide Nanostructures. In Elsevier eBooks (p. 444). Elsevier BV. https://doi.org/10.1016/b978-0-12- 409547-2.13482-1

Zhang, X., Guo, Q., & Cui, D. (2009). Recent Advances in Nanotechnology Applied to Biosensors.

Sensors, 9(2), 1033. https://doi.org/10.3390/s90201033

Zhu, C., Yang, G., Li, H., Du, D., & Lin, Y. (2014). Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures [Review of Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures]. Analytical Chemistry, 87(1), 230. American Chemical Society. https://doi.org/10.1021/ac5039863

Downloads

Published

2025-06-09

Issue

Section

Articles