Voltammetric Sensing in Portable and Point-of-Care Devices A Review of Recent Trends and Applications

Authors

  • Andi Eka Kartika Universitas Negeri Makassar

Keywords:

Electrochemical sensing, Portable devices, Point-of-care testing (POCT), Voltammetric sensors

Abstract

The growing demand for rapid, low-cost, and decentralized analytical technologies has driven the development of portable voltammetric sensors and point-of-care (POC) devices. This review examines recent advancements in miniaturized voltammetric systems, with a particular emphasis on innovations in screen-printed electrodes (SPEs), microfluidic integration, plug-and-play configurations, and smartphone-enabled electrochemical platforms. These technological developments exhibit substantial potential for real-time, on-site analytical applications across various fields, including medical diagnostics, environmental monitoring, food safety, and wearable health technologies. Several studies are highlighted to illustrate the practical implementation of voltammetric sensing, including glucose and uric acid detection, cancer biomarker analysis, heavy metal monitoring, pesticide screening, and nitrite and formaldehyde detection in food. The review also discusses major challenges such as signal noise, sensor stability, energy constraints, and the need for user-friendly interfaces. Finally, it outlines future research directions, focusing on the incorporation of artificial intelligence (AI), the Internet of Things (IoT), and low-power electronics to enable fully autonomous and smart diagnostic systems. These developments position voltammetric sensing as a vital tool in the future of accessible, real-time, and personalized analytical technologies.

References

Ahmed, M. U., Hossain, M. M., Safavieh, M., Wong, Y. L., Rahman, I. A., Zourob, M., & Tamiya, E. (2015). Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Critical Reviews in Biotechnology, 1–11.

Allen J. Bard, Larry R. Faulkner, H. S. W. (2022). Electrochemical Methods : Fundamental and Applications (Third Edit). John Wiley & Sons.

Almario, A. A., Calabokis, O. P., & Barrera, E. A. (2024). Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties. Foods, 13(22), 3586.

Anh, N. T., Tung, L. M., Vinh, L. K., Van Quy, N., Van Hoang, O., Dinh, N. X., & Le, A.-T. (2024). An on-site and portable electrochemical sensing platform based on spinel zinc ferrite nanoparticles for the quality control of paracetamol in pharmaceutical samples. Nanoscale Advances, 6(1), 256–267.

Arshavsky-Graham, S., & Segal, E. (2020). Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics (pp. 247–265).

Bayoumy, R. E., El-Ragehy, N. A., Hassan, N. Y., & Mahmoud, A. M. (2024). Disposable Point-of-Care Electrochemical Sensor for Uric Acid Determination in Human Urine Utilizing a Pencil Graphite Electrode Modified with Polydopamine/Gold Nanoparticles. Journal of The Electrochemical Society, 171(2), 027506.

Beduk, T., Beduk, D., de Oliveira Filho, J. I., Zihnioglu, F., Cicek, C., Sertoz, R., Arda, B., Goksel, T., Turhan, K., Salama, K. N., & Timur, S. (2021). Rapid Point-of-Care COVID-19 Diagnosis with a Gold-Nanoarchitecture-Assisted Laser-Scribed Graphene Biosensor. Analytical Chemistry, 93(24), 8585–8594.

Bianchi, V., Boni, A., Fortunati, S., Giannetto, M., Careri, M., & De Munari, I. (2020). A Wi-Fi Cloud-Based Portable Potentiostat for Electrochemical Biosensors. IEEE Transactions on Instrumentation and Measurement, 69(6), 3232–3240.

Cardoso Gomes-Junior, P., Dias Nascimento, E., Kenlderi de Lima Augusto, K., Patelli Longatto, G., Censi Faria, R., Piccin, E., & Fatibello-Filho, O. (2024). Voltammetric determination of uric acid using a miniaturized platform based on screen-printed electrodes modified with platinum nanoparticles. Microchemical Journal, 207, 111931.

Chand, R., Han, D., & Kim, Y.-S. (2013). Voltammetric Analysis on a Disposable Microfluidic Electrochemical Cell. Bulletin of the Korean Chemical Society, 34(4), 1175–1180.

Charoenkitamorn, K., Siangproh, W., Chailapakul, O., Oyama, M., & Chaneam, S. (2022). Simple Portable Voltammetric Sensor Using Anodized Screen-Printed Graphene Electrode for the Quantitative Analysis of p -Hydroxybenzoic Acid in Cosmetics. ACS Omega, 7(18), 16116–16126.

Chen, A., & Shah, B. (2013). Electrochemical sensing and biosensing based on square wave voltammetry. Analytical Methods, 5(9), 2158.

Cordova-Huaman, A. V., Jauja-Ccana, V. R., & La Rosa-Toro, A. (2021). Low-cost smartphone-controlled potentiostat based on Arduino for teaching electrochemistry fundamentals and applications. Heliyon, 7(2), e06259.

Dincer, C., Bruch, R., Costa‐Rama, E., Fernández‐Abedul, M. T., Merkoçi, A., Manz, A., Urban, G. A., & Güder, F. (2019). Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 31(30).

Douglas A. Skoog, Donald M. West, F. James Holler, dan S. R. C. (2013). Fundamentals of Analytical Chemistry. Cengage Learning.

Ebrahimi, G., Samadi Pakchin, P., Shamloo, A., Mota, A., de la Guardia, M., Omidian, H., & Omidi, Y. (2022). Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases. Microchimica Acta, 189(7), 252.

Felemban, S., Vazquez, P., Balbaied, T., & Moore, E. (2022). Lab-on-a-Chip Electrochemical Immunosensor Array Integrated with Microfluidics: Development and Characterisation. Electrochem, 3(4), 570–580.

Gao, W., Luo, X., Liu, Y., Zhao, Y., & Cui, Y. (2021). Development of an arduino-based integrated system for sensing of hydrogen peroxide. Sensors and Actuators Reports, 3, 100045.

Gulaboski, R., & Mirceski, V. (2024). Calculating of square-wave voltammograms—a practical on-line simulation platform. Journal of Solid State Electrochemistry, 28(3–4), 1121–1130.

Guo, M., Chen, Y., Mo, X., Sun, K., Du, Y., & Hu, F. (2024). Construction of a microfluidic electrochemical sensor based on screen printing electrode for the detection of fluoxetine. Microchemical Journal, 204, 111103.

Hayat, A., & Marty, J. (2014). Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring. Sensors, 14(6), 10432–10453.

He, Q., Wang, B., Liang, J., Liu, J., Liang, B., Li, G., Long, Y., Zhang, G., & Liu, H. (2023). Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring. Materials Today Advances, 17, 100340.

Jaya Lakshmi, K. S., K, R., Amreen, K., & Goel, S. (2024). Fully 3D Printed Miniaturized Electrochemical Platform With Plug-and-Play Graphitized Electrodes: Exhaustively Validated for Dopamine Sensing. IEEE Open Journal of Nanotechnology, 5, 30–38.

Kalita, N., Gogoi, S., Minteer, S. D., & Goswami, P. (2023). Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS Measurement Science Au, 3(6), 404–433.

Kashyap, B., & Kumar, R. (2021). A Plug-and-Play Type Field-Deployable Bio-Agent-Free Salicylic Acid Sensing System. IEEE Sensors Journal, 21(21), 24820–24828.

Kounaves, S. P. (1997). Voltammetric Techniques. In Handbook of Instrumental Techniques for Analytical Chemistry. F.A.Settle (Ed.) Prentice Hall.

Kremers, T., Thelen, S., Bosbach, N., & Schnakenberg, U. (2020). PortaDrop: A portable digital microfluidic platform providing versatile opportunities for Lab-On-A-Chip applications. PLOS ONE, 15(9), e0238581.

Krorakai, K., Klangphukhiew, S., Kulchat, S., & Patramanon, R. (2021). Smartphone-Based NFC Potentiostat for Wireless Electrochemical Sensing. Applied Sciences, 11(1), 392.

Li, Z., Li, J., Dou, Y., Wang, L., & Song, S. (2021). A Carbon-Based Antifouling Nano-Biosensing Interface for Label-Free POCT of HbA1c. Biosensors, 11(4), 118.

Liao, J., Chang, F., Han, X., Ge, C., & Lin, S. (2020). Wireless water quality monitoring and spatial mapping with disposable whole-copper electrochemical sensors and a smartphone. Sensors and Actuators B: Chemical, 306, 127557.

Lin, J., Chen, Y., Liu, X., Jiang, H., & Wang, X. (2025). Engineered Intelligent Electrochemical Biosensors for Portable Point-of-Care Diagnostics. Chemosensors, 13(4), 146.

Mahari, S., Roberts, A., Shahdeo, D., & Gandhi, S. (2020). eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2.

Maraprasertsak, N., Subpanyadee, P., Vinaisuratern, P., Thanachayanont, C., & Pungetmongkol, P. (2021). Smartphone sensor for pesticide monitoring using CuO modified screen printed electrodes. 2021 IEEE Sensors, 1–4.

Mendoza, A., Asrat, T., Liu, F., Wonnenberg, P., & Zestos, A. G. (2020). Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry. Sensors, 20(4), 1173.

Mincu, N.-B., Lazar, V., Stan, D., Mihailescu, C. M., Iosub, R., & Mateescu, A. L. (2020). Screen-Printed Electrodes (SPE) for In Vitro Diagnostic Purpose. Diagnostics, 10(8), 517.

Montes-Cebrián, Y., del Torno-de Román, L., Álvarez-Carulla, A., Colomer-Farrarons, J., Minteer, S. D., Sabaté, N., Miribel-Català, P. L., & Esquivel, J. P. (2018). ‘Plug-and-Power’ Point-of-Care diagnostics: A novel approach for self-powered electronic reader-based portable analytical devices. Biosensors and Bioelectronics, 118, 88–96.

Naghshgar, N., Hosseinzadeh, S., Derakhshandeh, A., Shaali, R., & Doroodmand, M. M. (2024). Introducing a portable electrochemical biosensor for Mycobacterium avium subsp. paratuberculosis detection using graphene oxide and chitosan. Scientific Reports, 14(1), 34.

Pacheco, J. G., Silva, M. S. V., Freitas, M., Nouws, H. P. A., & Delerue-Matos, C. (2018). Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3). Sensors and Actuators B: Chemical, 256, 905–912.

Promsuwan, K., Saichanapan, J., Soleh, A., Saisahas, K., Samoson, K., Wangchuk, S., Kanatharana, P., Thavarungkul, P., & Limbut, W. (2024). Nano-palladium-decorated bismuth sulfide microspheres on a disposable electrode integrated with smartphone-based electrochemical detection of nitrite in food samples. Food Chemistry, 447, 138987.

Promsuwan, K., Soleh, A., Samoson, K., Saisahas, K., Wangchuk, S., Saichanapan, J., Kanatharana, P., Thavarungkul, P., & Limbut, W. (2023). Novel biosensor platform for glucose monitoring via smartphone based on battery-less NFC potentiostat. Talanta, 256, 124266.

Queijo, A. R., Frydel, L., Valente, A., Styszko, K., & Rego, R. (2025). Emerging contaminants: the application of a homemade electrochemical IoT-enabled device to solve a global challenge. Electrochimica Acta, 532, 146395.

Ramaley, L., & Krause, M. S. (1969). Theory of square wave voltammetry. Analytical Chemistry, 41(11), 1362–1365.

Rasheed, S., Kanwal, T., Ahmad, N., Fatima, B., Najam-ul-Haq, M., & Hussain, D. (2024). Advances and challenges in portable optical biosensors for onsite detection and point-of-care diagnostics. TrAC Trends in Analytical Chemistry, 173, 117640.

Sabitova, Y., Svalova, T., Medvedeva, M., Malysheva, N., Rusinov, V., Matern, A., & Kozitsina, A. (2024). Rapid voltammetric determination of hemagglutinin in saliva using magnetic nanoparticles modified with triazolotriazine in a portable cell design. Chimica Techno Acta, 12(1).

Said, N. A. M., Twomey, K., Herzog, G., & Ogurtsov, V. I. (2017). Fabrication and characterization of microfabricated on-chip microelectrochemical cell for biosensing applications. 020032.

Seguro, I., Rebelo, P., Pacheco, J. G., & Delerue-Matos, C. (2022). Electropolymerized, Molecularly Imprinted Polymer on a Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone. Sensors, 22(7), 2819.

Shi, Y., Dou, H., Zhou, A., & Chen, Y. (2008). Design and fabrication of a miniaturized electrochemical instrument and its preliminary evaluation. Sensors and Actuators B: Chemical, 131(2), 516–524.

Shi, Z., Deng, P., Zhou, L., Jin, M., Fang, F., Chen, T., Liu, G., Wen, H., An, Z., Liang, H., Lu, Y., Liu, J., & Liu, Q. (2024). Wireless and battery-free wearable biosensing of riboflavin in sweat for precision nutrition. Biosensors and Bioelectronics, 251, 116136.

Shi, Z., Zhao, H., Zhou, F., Mao, Y., Gong, Z., & Lan, M. (2025). Sensitive Electrochemical Biosensor Using Gold and Manganese (IV) Oxide Nanomaterials on Multiwalled Carbon Nanotubes for the Determination of Homocysteine With a Portable Potentiostat. Analytical Letters, 58(3), 492–505.

Shin Low, S., Pan, Y., Ji, D., Li, Y., Lu, Y., He, Y., Chen, Q., & Liu, Q. (2020). Smartphone-based portable electrochemical biosensing system for detection of circulating microRNA-21 in saliva as a proof-of-concept. Sensors and Actuators B: Chemical, 308, 127718.

Silva, L. R. G., Rodrigues, J. G. A., Franco, J. P., Santos, L. P., D’Elia, E., Romão, W., & Ferreira, R. de Q. (2021). Development of a portable electroanalytical method using nickel modified screen-printed carbon electrode for ethinylestradiol determination in organic fertilizers. Ecotoxicology and Environmental Safety, 208, 111430.

Singh, I., Gupta, A., Gupta, C., Mani, A., & Basu, T. (2024). AI-Driven Improvements in Electrochemical Biosensors for Effective Pathogen Detection at Point-of-Care. The 4th International Electronic Conference on Biosensors, 5.

Soleh, A., Saisahas, K., Promsuwan, K., Saichanapan, J., Thavarungkul, P., Kanatharana, P., Meng, L., Mak, W. C., & Limbut, W. (2023). A wireless smartphone-based “tap-and-detect” formaldehyde sensor with disposable nano-palladium grafted laser-induced graphene (nanoPd@LIG) electrodes. Talanta, 254, 124169.

Srikanth, S., Mohan, J. M., Raut, S., Dubey, S. K., Ishii, I., Javed, A., & Goel, S. (2021). Droplet based microfluidic device integrated with ink jet printed three electrode system for electrochemical detection of ascorbic acid. Sensors and Actuators A: Physical, 325, 112685.

Vishnu, N., Sharma, C. S., & Senthil Kumar, A. (2020). A low-cost and miniaturized electrochemical cell for low-sample analyses. Microchemical Journal, 159, 105591.

Xu, Z., Liu, Z., Xiao, M., Jiang, L., & Yi, C. (2020). A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions. Chemical Engineering Journal, 394, 124966.

Xue, B., Yang, Q., Xia, K., Li, Z., Chen, G. Y., Zhang, D., & Zhou, X. (2023). An AuNPs/Mesoporous NiO/Nickel Foam Nanocomposite as a Miniaturized Electrode for Heavy Metal Detection in Groundwater. Engineering, 27, 199–208.

Yakoh, A., Pimpitak, U., Rengpipat, S., Hirankarn, N., Chailapakul, O., & Chaiyo, S. (2021). Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosensors and Bioelectronics, 176, 112912.

Zhang, Y., Jin, S., Liu, R., Liu, Z., Gong, L., Zhang, L., Zhao, T., Chen, S., Niu, L., Fa, H., & Yin, W. (2024). A new portable electrochemical detection sensor based on molecularly imprinted polymer-modified MOF-808/AB for the highly sensitive and selective determination of dimethoate. Microchemical Journal, 206, 111436.

Zheng, Q., Cao, Y., Chen, Y., Zhu, W., Zhang, S., Ye, Q., Zhou, C., Liu, Y., & Jia, N. (2025). Portable electrochemical test strip based on Au/graphene for rapid on-site detection of xylazine in raw milk. Microchemical Journal, 212, 113205.

Downloads

Published

2025-06-05

Issue

Section

Articles