Review of Transition Metal Dithiocarbamate Complexes: Novel Fluorescent Materials for Biosensor Applications
DOI:
https://doi.org/10.51574/hayyan.v2i2.3149Keywords:
Fluorescent, Transition Metal, Dithiocarbamate, BiosensorAbstract
Transition metal complexes with dithiocarbamate ligands have attracted significant attention in recent decades due to their unique electronic and optical properties. This article presents a comprehensive review of transition metal-dithiocarbamate complexes as fluorescent materials and their potential in biosensor development. Focus is given on their chemical structure, fluorescence mechanism, as well as their application in detecting important biomolecules. With the increasing need for sensitive, selective, and low-cost biosensors, these materials offer promising prospects in various biomedical and environmental applications.
References
Adeyemi, J. O., & Onwudiwe, D. C. (2020). The mechanisms of action involving dithiocarbamate complexes in biological systems. Inorganica Chimica Acta, 511, 119809. https://doi.org/10.1016/j.ica.2020.119809
Agasti, S. S., Rana, S., Park, M., Kim, C. K., You, C., & Rotello, V. M. (2009). Nanoparticles for detection and diagnosis [Review of Nanoparticles for detection and diagnosis]. Advanced Drug Delivery Reviews, 62(3), 316. Elsevier BV. https://doi.org/10.1016/j.addr.2009.11.004
Aguilar, Z. P., Al-Ogaidi, I., Suri, S., Gou, H., Wu, N., Xu, H., Wei, H., & Wang, A. (2014). Nano and Bio Sensors for Life Sciences Applications. Meeting Abstracts/Meeting Abstracts (Electrochemical Society. CD-ROM), 10, 667. https://doi.org/10.1149/ma2014-02/10/667
Ahmed, A. J. (2018). Metal Complexes of Dithiocarbamate Derivatives and its Biological Activity. Asian Journal of Chemistry, 30(12), 2595. https://doi.org/10.14233/ajchem.2018.21545
Akbarzadeh, A., Samiei, M., & Davaran, S. (2012). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 7(1). https://doi.org/10.1186/1556-276x-7-144
Andrew, F. P., & Ajibade, P. A. (2017). Metal complexes of alkyl-aryl dithiocarbamates: Structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals. Journal of Molecular Structure, 1155, 843. https://doi.org/10.1016/j.molstruc.2017.10.106
Barbosa, A. I., Rebelo, R., Reis, R. L., Bhattacharya, M., & Correlo, V. M. (2020). Current nanotechnology advances in diagnostic biosensors. Medical Devices & Sensors, 4(1). https://doi.org/10.1002/mds3.10156
Bhattarai, P., & Hameed, S. (2020). Basics of Biosensors and Nanobiosensors (p. 1). https://doi.org/10.1002/9783527345137.ch1
Cheng, P., Xu, K., Yao, W., Xie, E., & Liu, J. (2013). Novel fluorescent chemosensors based on carbazole for Cu2+ and Fe3+ in aqueous media. Journal of Luminescence, 143, 583. https://doi.org/10.1016/j.jlumin.2013.06.013
Collinson, S. R., & Schröder, M. (2005). S ‐Donor Ligands. In Encyclopedia of Inorganic Chemistry. https://doi.org/10.1002/0470862106.ia210
Dhull, N., Kaur, G., Jain, P., Mishra, P., Singh, D., Ganju, L., Gupta, V., & Tomar, M. (2019). Label-free amperometric biosensor for Escherichia coli O157:H7 detection. Applied Surface Science, 495, 143548. https://doi.org/10.1016/j.apsusc.2019.143548
El‐Nahass, M. N., El‐Aziz, D. M. A., & Fayed, T. A. (2014). Selective “on–off–on” switchable chemosensor for metal ions detection and its complexes. Sensors and Actuators B Chemical, 205, 377. https://doi.org/10.1016/j.snb.2014.08.067
Heard, P. J. (2005). Main Group Dithiocarbamate Complexes. In Progress in inorganic chemistry (p. 1). Wiley. https://doi.org/10.1002/0471725587.ch1
Ji, C., Zhou, Y., Leblanc, R. M., & Peng, Z. (2020). Recent Developments of Carbon Dots in Biosensing: A Review [Review of Recent Developments of Carbon Dots in Biosensing: A Review]. ACS Sensors, 5(9), 2724. American Chemical Society. https://doi.org/10.1021/acssensors.0c01556
Johnson, A., Curtis, R. M., & Wallace, K. J. (2019). Low Molecular Weight Fluorescent Probes (LMFPs) to Detect the Group 12 Metal Triad. Chemosensors, 7(2), 22. https://doi.org/10.3390/chemosensors7020022
Kilic, N. M., Singh, S., Keles, G., Cinti, S., Kurbanoğlu, S., & Demirkol, D. O. (2023). Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors [Review of Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors]. Biosensors, 13(6), 622. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/bios13060622
Liu, W., Chen, J., & Xu, Z. (2020). Fluorescent probes for biothiols based on metal complex. Coordination Chemistry Reviews, 429, 213638. https://doi.org/10.1016/j.ccr.2020.213638
Mascini, M., & Tombelli, S. (2008). Biosensors for biomarkers in medical diagnostics [Review of Biosensors for biomarkers in medical diagnostics]. Biomarkers, 13, 637. Taylor & Francis. https://doi.org/10.1080/13547500802645905
McCourt, K., Cochran, J. P., Abdelbasir, S. M., Carraway, E. R., Tzeng, T., Tsyusko, O. V., & Vanegas, D. (2022). Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors [Review of Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors]. Biosensors, 12(12), 1082. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/bios12121082
Mukherjee, A., & Sadler, P. J. (2009). Metals in Medicine: Therapeutic Agents. In Wiley Encyclopedia of Chemical Biology (p. 1). https://doi.org/10.1002/9780470048672.wecb333
Noah, N. M., & Ndangili, P. M. (2019). Current Trends of Nanobiosensors for Point-of-Care Diagnostics [Review of Current Trends of Nanobiosensors for Point-of-Care Diagnostics]. Journal of Analytical Methods in Chemistry, 2019, 1. Hindawi Publishing Corporation. https://doi.org/10.1155/2019/2179718
Noah, N. M., & Ndangili, P. M. (2021). Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2112.04740
Odularu, A. T., & Ajibade, P. A. (2019). Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications [Review of Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications]. Bioinorganic Chemistry and Applications, 2019, 1. Hindawi Publishing Corporation. https://doi.org/10.1155/2019/8260496
Pasinszki, T., Krebsz, M., Tùng, T. T., & Lošić, D. (2017). Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis [Review of Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis]. Sensors, 17(8), 1919. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/s17081919
Peled, A., Pevzner, A., Soroka, H. P., & Patolsky, F. (2014). Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors. Journal of Nanobiotechnology, 12(1). https://doi.org/10.1186/1477-3155-12-7
Pérez‐López, B., & Merkoçi, A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technology, 22(11), 625. https://doi.org/10.1016/j.tifs.2011.04.001
Perfézou, M., Turner, A., & Merkoçi, A. (2011). Cancer detection using nanoparticle-based sensors [Review of Cancer detection using nanoparticle-based sensors]. Chemical Society Reviews, 41(7), 2606. Royal Society of Chemistry. https://doi.org/10.1039/c1cs15134g
Rabbani, M., Hoque, M. E., & Mahbub, Z. B. (2020). Nanosensors in biomedical and environmental applications: Perspectives and prospects. In Elsevier eBooks (p. 163). Elsevier BV. https://doi.org/10.1016/b978-0-12-820702-4.00007-6
Reichert, D. E., Lewis, J. S., & Anderson, C. J. (1999). Metal complexes as diagnostic tools. Coordination Chemistry Reviews, 184(1), 3. https://doi.org/10.1016/s0010-8545(98)00207-0
Saiyed, T. A., Adeyemi, J. O., & Onwudiwe, D. C. (2021). The structural chemistry of zinc(ii) and nickel(ii) dithiocarbamate complexes. Open Chemistry, 19(1), 974. https://doi.org/10.1515/chem-2021-0080
Sesay, A. M., Tervo, P., & Tikkanen, E. (2017). Biomarkers in Health Care (p. 17). https://doi.org/10.1002/9781119065036.ch2
Sohail, U., Ullah, F., Arfan, N. H. B. Z., Hamid, M. H. S. A., Mahmood, T., Sheikh, N. S., & Ayub, K. (2023). Transition Metal Sensing with Nitrogenated Holey Graphene: A First-Principles Investigation. Molecules, 28(10), 4060. https://doi.org/10.3390/molecules28104060
Tan, Y. S., Yeo, C. I., Tiekink, E. R. T., & Heard, P. J. (2021). Dithiocarbamate Complexes of Platinum Group Metals: Structural Aspects and Applications. Inorganics, 9(8), 60. https://doi.org/10.3390/inorganics9080060
Teeuwen, P. C. P., Melissari, Z., Senge, M. O., & Williams, R. M. (2022). Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers [Review of Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers]. Molecules, 27(20), 6967. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules27206967
Tóth, É., Helm, L., & Merbach, A. E. (2003). Metal Complexes as MRI Contrast Enhancement Agents. In Elsevier eBooks (p. 841). Elsevier BV. https://doi.org/10.1016/b0-08-043748-6/09007-1
Udhayakumari, D., Suganya, S., & Velmathi, S. (2013). Thiosemicabazone based fluorescent chemosensor for transition metal ions in aqueous medium. Journal of Luminescence, 141, 48. https://doi.org/10.1016/j.jlumin.2013.03.023
Willander, M., Tahira, A., & Ibupoto, Z. H. (2017). Potentiometric Biosensors Based on Metal Oxide Nanostructures. In Elsevier eBooks (p. 444). Elsevier BV. https://doi.org/10.1016/b978-0-12-409547-2.13482-1
Zhang, X., Guo, Q., & Cui, D. (2009). Recent Advances in Nanotechnology Applied to Biosensors. Sensors, 9(2), 1033. https://doi.org/10.3390/s90201033
Zhu, C., Yang, G., Li, H., Du, D., & Lin, Y. (2014). Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures [Review of Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures]. Analytical Chemistry, 87(1), 230. American Chemical Society. https://doi.org/10.1021/ac5039863
Downloads
Published
Versions
- 2025-06-10 (3)
- 2025-06-05 (2)
- 2025-06-05 (1)