Review of the Role Calcium Silicate Ceramics for Bone Tissue Repair

Authors

  • Suriati Eka Putri Universitas Negeri Makassar
  • Rini Perdana Universitas Negeri Makassar

DOI:

https://doi.org/10.51574/hayyan.v1i3.2335

Keywords:

bioceramics, calcium silicate, bone tissue

Abstract

Bioinorganic science and the utilization of metal ions in the synthesis and design of new materials have received considerable attention in relation to their use as new biomaterials. One of the important roles of metal ions is to control the characteristics of the resulting biomaterials, namely their biological and chemical properties. To date, main group metal ions and transition metals have been used in the fabrication process of silicate and phosphate-based ceramics. Metal ions are used to modify their chemical composition and structure to overcome the shortcomings of silicate and phosphate-based ceramics. Calcium silicate (CaSiO3, CS) ceramics are biocompatible and bioactive. In this review, we consider the apatite-forming ability and biological properties of ion-doped CS ceramics such as bredigite, akermanite, monticellite, diopside, merwinite, hardystonite, baghdadite and sphene. Overall, according to the studies conducted on CS bioceramics, all of them may be good candidates for bone tissue regeneration

References

AL-AMLEH, B., LYONS, K., & SWAIN, M. (2010). Clinical trials in zirconia: a systematic review. Journal of Oral Rehabilitation, 37(8), 641–652. https://doi.org/https://doi.org/10.1111/j.1365-2842.2010.02094.x
Cho, Y. S., Choi, S., Lee, S.-H., Kim, K. K., & Cho, Y.-S. (2019). Assessments of polycaprolactone/hydroxyapatite composite scaffold with enhanced biomimetic mineralization by exposure to hydroxyapatite via a 3D-printing system and alkaline erosion. European Polymer Journal, 113, 340–348. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2019.02.006
De Aza, P., Aza, A., Peña, P., & Aza, S. (2018). Cerámica y Vidrio Bioactive glasses and glass-ceramics.
Hu, D., Li, K., Xie, Y., Pan, H., Zhao, J., Huang, L., & Zheng, X. (2016). Different response of osteoblastic cells to Mg2+, Zn2+ and Sr2+ doped calcium silicate coatings. Journal of Materials Science: Materials in Medicine, 27(3), 56. https://doi.org/10.1007/s10856-016-5672-y
Jodati, H., Yılmaz, B., & Evis, Z. (2020). A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceramics International, 46(10), 15725–15739. https://doi.org/10.1016/j.ceramint.2020.03.192
Lin, K., Xia, L., Li, H., Jiang, X., Pan, H., Xu, Y., Chang, J. (2013). Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials, 34(38), 10028–10042. https://doi.org/https://doi.org/10.1016/j.biomaterials.2013.09.056
Lin, K., Zhai, W., Ni, S., Chang, J., Zeng, Y., & Qian, W. (2005). Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceramics International, 31(2), 323–326. https://doi.org/https://doi.org/10.1016/j.ceramint.2004.05.023
Lin, Y.-H., Lee, A. K.-X., Ho, C.-C., Fang, M.-J., Kuo, T.-Y., & Shie, M.-Y. (2022). The effects of a 3D-printed magnesium-/strontium-doped calcium silicate scaffold on regulation of bone regeneration via dual-stimulation of the AKT and WNT signaling pathways. Materials Science and Engineering: C, 112660. https://doi.org/https://doi.org/10.1016/j.msec.2022.112660
Maeno, S., Niki, Y., Matsumoto, H., Morioka, H., Yatabe, T., Funayama, A., … Tanaka, J. (2005). The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials, 26(23), 4847–4855. https://doi.org/10.1016/j.biomaterials.2005.01.006
Marie, P. J. (2010). The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone, 46(3), 571–576. https://doi.org/10.1016/j.bone.2009.07.082
Midha, S., van den Bergh, W., Kim, T. B., Lee, P. D., Jones, J. R., & Mitchell, C. A. (2013). Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro. Advanced Healthcare Materials, 2(3), 490–499. https://doi.org/10.1002/adhm.201200140
Mohammadi, H., Hafezi, M., Nezafati, N., Heasarki, S., Nadernezhad, A., Ghazanfari, S. M. H., & Sepantafar, M. (2014). Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: Bioactivity and biological properties. Journal of Ceramic Science and Technology, 5(1), 1–12. https://doi.org/10.4416/JCST2013-00027
No, Y. J., Li, J. J., & Zreiqat, H. (2017). Doped calcium silicate ceramics: A new class of candidates for synthetic bone substitutes. Materials, 10(2). https://doi.org/10.3390/ma10020153
Papynov, E. K., Shichalin, O. O., Mayorov, V. Y., Modin, E. B., Portnyagin, A. S., Gridasova, E. A., Avramenko, V. A. (2017). Sol-gel and SPS combined synthesis of highly porous wollastonite ceramic materials with immobilized Au-NPs. Ceramics International, 43(11), 8509–8516. https://doi.org/10.1016/j.ceramint.2017.03.207
Pravina, P., Sayaji, D., … M. A. R. in P. and, & 2013, undefined. (2013). Calcium and its role in human body. Academia.Edu, 4(2), 659–668. Retrieved from http://www.academia.edu/download/32830082/8.pdf
Schumacher, T. C., Aminian, A., Volkmann, E., Lührs, H., Zimnik, D., Pede, D., … Rezwan, K. (2015). Synthesis and mechanical evaluation of Sr-doped calcium-zirconium-silicate (baghdadite) and its impact on osteoblast cell proliferation and {ALP} activity. Biomedical Materials, 10(5), 55013. https://doi.org/10.1088/1748-6041/10/5/055013
Siriphannon, P., Kameshima, Y., Yasumori, A., Okada, K., & Hayashi, S. (2002). Formation of Hydroxyapatite on CaSiO3 Powders in Simulated Body Fluid. Journal of The European Ceramic Society - J EUR CERAM SOC, 22, 511–520. https://doi.org/10.1016/S0955-2219(01)00301-6
Srinath, P., Abdul Azeem, P., & Venugopal Reddy, K. (2020). Review on calcium silicate-based bioceramics in bone tissue engineering. International Journal of Applied Ceramic Technology, 17(5), 2450–2464. https://doi.org/10.1111/ijac.13577
Tian, T., Han, Y., Ma, B., Wu, C., & Chang, J. (2015). Novel Co-akermanite (Ca2CoSi2O7) bioceramics with the activity to stimulate osteogenesis and angiogenesis. J. Mater. Chem. B, 3(33), 6773–6782. https://doi.org/10.1039/C5TB01244A
Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., … Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278–314. https://doi.org/https://doi.org/10.1016/j.bioactmat.2017.10.001
Wu, C., Chang, J., Ni, S., & Wang, J. (2006). In vitro bioactivity of akermanite ceramics. Journal of Biomedical Materials Research Part A, 76A(1), 73–80. https://doi.org/https://doi.org/10.1002/jbm.a.30496
Wu, C., Ramaswamy, Y., Kwik, D., & Zreiqat, H. (2007). The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials, 28(21), 3171–3181. https://doi.org/https://doi.org/10.1016/j.biomaterials.2007.04.002
Xu, K., Meng, Q., Li, L., & Zhu, M. (2021). Mesoporous calcium silicate and titanium composite scaffolds via 3D-printing for improved properties in bone repair. Ceramics International, 47(13), 18905–18912. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.03.231
Zheng, T., Guo, L., Du, Z., Leng, H., Cai, Q., & Yang, X. (2021). Bioceramic fibrous scaffolds built with calcium silicate/hydroxyapatite nanofibers showing advantages for bone regeneration. Ceramics International, 47(13), 18920–18930. https://doi.org/10.1016/j.ceramint.2021.03.234

Downloads

Published

2024-10-31

Issue

Section

Articles