Pemanfaatan AI dalam Aktivitas Akademik Mahasiswa: Persepsi Manfaat, Risiko, dan Strategi Etis di Pendidikan Tinggi (Studi Mixed Methods)
https://doi.org/10.51574/jrip.v6i1.4514
Keywords:
Artificial Intelligent, Aktivitas Akademik, Mixed Methods , Literasi AIAbstract
Penelitian ini bertujuan mengidentifikasi pola kuantitatif penggunaan Artificial Intelligence (AI) oleh mahasiswa serta mengintegrasikannya dengan penjelasan kualitatif untuk memahami manfaat yang dirasakan, risiko, dan strategi etis penggunaan AI dalam aktivitas akademik di perguruan tinggi Indonesia. Secara khusus, penelitian ini mengkaji jenis alat AI yang digunakan, bentuk tugas akademik yang didukung AI, serta persepsi mahasiswa terhadap manfaat-risiko dan strategi etis penggunaan AI. Kebaruan penelitian ini terletak pada penerapan desain mixed methods konvergen (Convergent Parallel) yang mengintegrasikan data kuantitatif dan kualitatif secara simultan guna menghasilkan gambaran komprehensif dan kontekstual tentang penggunaan AI oleh mahasiswa. Data dikumpulkan secara bersamaan melalui kuesioner tertutup dan respon terbuka, kemudian diintegrasikan pada tahap interpretasi. Partisipan penelitian berjumlah 44 mahasiswa Program Studi Pendidikan Biologi Universitas Muhammadiyah Makassar (34 perempuan dan 10 laki-laki) pada tahun akademik 2024-2025. Meskipun sampel purposif yang terbatas pada satu program studi membatasi generalisasi statistik, temuan penelitian ini memberikan potret mendalam yang relevan bagi pengembangan kebijakan dan praktik institusional dalam konteks serupa. Secara kuantitatif, alat AI yang paling banyak digunakan adalah ChatGPT (86,4%), Canva AI (38,6%), Gemini (25,0%), dan Perplexity (25,0%). Aktivitas akademik yang paling sering didukung AI meliputi pencarian referensi, penulisan esai/artikel, penyusunan presentasi, dan penyelesaian tugas. Sebagian besar mahasiswa menilai AI sebagai alat yang membantu, namun mayoritas juga menyadari risiko seperti plagiarisme, ketergantungan, penurunan berpikir kritis, dan ketidakakuratan informasi. Temuan kualitatif menunjukkan mahasiswa menerapkan strategi etis dengan memverifikasi keluaran AI dan menggunakan AI sebagai penghasil ide. Penelitian ini merekomendasikan penguatan pedoman penggunaan AI, literasi AI, dan desain asesmen berbasis berpikir tingkat tinggi.
Downloads
References
AlAli, R., & Wardat, Y. (2024). Opportunities and challenges of integrating generative artificial intelligence in education. International Journal of Religion, 5(7), 784-793. https://doi.org/10.61707/8y29gv34
Baidoo-Anu, D., & Owusu Ansah, L. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62.
Baytak, A. (2023). The acceptance and diffusion of generative artificial intelligence in education: A literature review. Current Perspectives in Educational Research, 6(1), 7-18.
Bukar, U. A., Sayeed, M. S., Razak, S. F. A., Yogarayan, S., & Sneesl, R. (2024). Decision-making framework for the utilization of generative artificial intelligence in education: A case study of ChatGPT. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3425172
Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education: Contributors, collaborations, research topics, challenges, and future directions. Educational Technology & Society, 25(1), 28-47.
Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education. https://doi.org/10.1186/s41239-023-00392-8
Febriani, H. (2024). Navigating English learning with AI: A qualitative study of university students experiences. PPSDP International Journal of Education. https://doi.org/10.59175/pijed.v3i2.309
Gellai, D. B. (2022). Enterprising academics: Heterarchical policy networks for artificial intelligence in British higher education. ECNU Review of Education. https://doi.org/10.1177/20965311221143798
Ginting, P., Batubara, H. M., & Hasnah, Y. (2023). Artificial intelligence powered writing tools as adaptable aids for academic writing: Insight from EFL college learners in writing final project. International Journal of Multidisciplinary Research and Analysis. https://doi.org/10.47191/ijmra/v6-i10-15
Hsu, Y.-C., & Ching, Y.-H. (2023). Generative artificial intelligence in education, Part One: The dynamic frontier. TechTrends, 67(4), 603-607. https://doi.org/10.1007/s11528-023-00863-9
Hsu, Y.-C., & Ching, Y.-H. (2023). Generative artificial intelligence in education, Part Two: International perspectives. TechTrends, 67(6), 885-890. https://doi.org/10.1007/s11528-023-00913-2
Mirza, A. A., Wazgar, O. M., Almaghrabi, A. A., Ghandour, R. M., Alenizi, S. A., Mirza, A. A., Alraddadi, K. S., Al-Adwani, F. H., Al-sakkaf, M. A., & Aljuaid, S. M. (2022). The use of artificial intelligence in medical imaging: A nationwide pilot survey of trainees in Saudi Arabia. Clinics and Practice. https://doi.org/10.3390/clinpract12060090
Mncube, D. W., Maphalala, M. C., & Mkhasibe, R. G. (2026). Artificial intelligence in higher education: Supporting self-directed learning and student autonomy. Turkish Online Journal of Distance Education, 27(1), Article 15. https://doi.org/10.17718/tojde.1668721
Mo, F., Huang, J., Yang, Y., Özen, Z., Maeda, Y., & Olenchak, F. R. (2026). Undergraduate students’ learning outcomes with ChatGPT: A meta-analytic study. Computers and Education: Artificial Intelligence, 10, 100536. https://doi.org/10.1016/j.caeai.2025.100536
Mousavi Baigi, S. F., Sarbaz, M., Ghaddaripouri, K., Ghaddaripouri, M., Mousavi, A. S., & Kimiafar, K. (2023). Attitudes, knowledge, and skills towards artificial intelligence among healthcare students: A systematic review. Health Science Reports. https://doi.org/10.1002/hsr2.1138
Pesovski, I., Santos, R., Henriques, R., & Trajkovik, V. (2024). Generative AI for customizable learning experiences. Sustainability. https://doi.org/10.3390/su16073034
Qu, J., Zhao, Y., & Xie, Y. (2022). Artificial intelligence leads the reform of education models. Systems Research and Behavioral Science. https://doi.org/10.1002/sres.2864
Reina Marín, Y., Cruz Caro, O., Carrasco Rituay, A. M., Guimac Llanos, K. A., Tarrillo Perez, D., Sánchez Bardales, E., Alva Tuesta, J. N., & Chávez Santos, R. (2025). Ethical challenges associated with the use of artificial intelligence in university education. Journal of Academic Ethics, 23, 2443-2467. https://doi.org/10.1007/s10805-025-09660-w
Rohaizam, N. B. (2024). ChatGPT: Between opportunities and challanges in increasing academic productivity. JPUA Jurnal Perpustakaan Universitas Airlangga Media Informasi Dan Komunikasi Kepustakawanan. https://doi.org/10.20473/jpua.v14i1.2024.54-60
Schmidt, D. A., Alboloushi, B., Thomas, A., & Magalhaes, R. (2025). Integrating artificial intelligence in higher education: Perceptions, challenges, and strategies for academic innovation. Computers and Education Open, 9, 100274. https://doi.org/10.1016/j.caeo.2025.100274
Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning & Teaching. https://doi.org/10.37074/jalt.2023.6.1.17
Teoh, L. R. G., Singh, M. K. M., & Muniandy, J. (2025). AI knowledge readiness among university students: A cross-sectional quantitative study. Training, Language and Culture, 9(4), 112-129. https://doi.org/10.22363/2521-442X-2025-9-4-112-129
Wang, T., Lund, B., Marengo, A., Pagano, A., Mannuru, N. R., Teel, Z. A., & Pange, J. (2023). Exploring the potential impact of artificial intelligence (AI) on international students in higher education: Generative AI, chatbots, analytics, and international student success. Applied Sciences. https://doi.org/10.3390/app13116716
Yilmaz, H. S., Maxutov, S., Baitekov, A., & Balta, N. (2023). Student attitudes towards ChatGPT: A technology acceptance model survey. International Educational Review. https://doi.org/10.58693/ier.114
Yu, H., & Guo, Y. (2023). Generative artificial intelligence empowers educational reform: Current status, issues, and prospects. Frontiers in Education, 8, 1183162. https://doi.org/10.3389/feduc.2023.1183162
Yuk Chan, C. K. (2023). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education. https://doi.org/10.1186/s41239-023-00408-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Anisa Anisa, Nurdiyanti Nurdiyanti, Rahmatia Thahir, Nurul Magfirah, Hilmi Hambali, Nurul Fadhilah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





