Membran Berbasis Biopolimer untuk Aplikasi DMFC (Direct Methanol Fuel Cell): Kajian Mekanisme, Modifikasi, dan Prospek Masa Depan

Authors

  • Muhammad Nur Alam Universitas Negeri Makassar

Keywords:

Membran, Biopolimer, Sel Bahan Bakar

Abstract

Meningkatnya kebutuhan akan sistem konversi energi yang berkelanjutan telah mendorong penelitian intensif terhadap membran penukar proton berbasis biopolimer sebagai alternatif potensial membran perfluorosulfonic acid (PFSA) komersial untuk aplikasi Direct Methanol Fuel Cell (DMFC). Studi ini mensintesis temuan dari lima belas publikasi terbaru yang mengkaji membran berbasis chitosan, selulosa, dan nanocellulose yang dimodifikasi melalui proses sulfonasi, crosslinking, penambahan nanofiller, serta pembentukan hibrida polielektrolit. Secara umum, membran biopolimer termodifikasi menunjukkan peningkatan konduktivitas proton dalam kisaran 10⁻³–10⁻² S/cm serta penurunan permeabilitas metanol hingga satu hingga dua orde lebih rendah dibandingkan Nafion, yang terutama disebabkan oleh terbentuknya jalur difusi berliku dan domain ionik yang lebih terorganisasi. Sejumlah studi juga melaporkan nilai open circuit voltage (OCV) yang lebih tinggi daripada membran PFSA akibat berkurangnya penetrasi metanol, meskipun densitas daya maksimum masih lebih rendah karena hambatan transport proton dan keterbatasan stabilitas jangka panjang. Evaluasi durabilitas menunjukkan bahwa membran yang diperkuat nanofiller atau difungsionalisasi secara kimia memiliki ketahanan oksidatif dan termal yang lebih baik, tetapi tetap mengalami degradasi performa setelah siklus hidrasi–dehidrasi berulang. Secara keseluruhan, bukti kolektif ini menegaskan bahwa meskipun tantangan masih ada, membran berbasis biopolimer menunjukkan prospek kuat sebagai kandidat generasi baru yang lebih ekonomis, ramah lingkungan, dan kompetitif untuk aplikasi DMFC

References

Batool, M., Shafeeq, A., Haider, B., & Ahmad, N. M. (2021). Tio2 nanoparticle filler-based mixed-matrix pes/ca nanofiltration membranes for enhanced desalination. Membranes, 11(6), 1–17. https://doi.org/10.3390/membranes11060433

Chen, G. Q., Kanehashi, S., Doherty, C. M., Hill, A. J., & Kentish, S. E. (2015). Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification. Journal of Membrane Science, 487, 249–255. https://doi.org/10.1016/J.MEMSCI.2015.03.074

Du, X., Zhang, Z., Carlson, K. H., Lee, J., & Tong, T. (2018). Membrane fouling and reusability in membrane distillation of shale oil and gas produced water: Effects of membrane surface wettability. Journal of Membrane Science, 567, 199–208. https://doi.org/10.1016/j.memsci.2018.09.036

Figueiredo, A. S., Sánchez-Loredo, M. G., de Pinho, M. N., & Minhalma, M. (2025). Surface-Charge Characterization of Nanocomposite Cellulose Acetate/Silver Membranes and BSA Permeation Performance. Membranes, 15(2), 61. https://doi.org/10.3390/membranes15020061

Gebru, K. A., & Das, C. (2017). Preparation and characterization of CA−PEG−TiO2 membranes: Effect of PEG and TiO2 on morphology, flux and fouling performance. Journal of Membrane Science and Research, 3(2), 90–101. https://doi.org/10.22079/jmsr.2016.22820

Jasim, S. A., Al Maimuri, N. M. L., Hashim, A., Abbas, M. H., Hadi, A., & Ibrahim, H. (2025). Fabrication and Enhancing the Features of Chitosan/SnO2-ZnO Nanocomposites Films for Optoelectronics and Biological Applications. Trends in Sciences, 22(10), 10534. https://doi.org/10.48048/tis.2025.10534

Jia, X., Li, K., Wang, B., Zhao, Z. C., Hou, D., & Wang, J. (2022). Membrane cleaning in membrane distillation of reverse osmosis concentrate generated in landfill leachate treatment. Water Science and Technology, 85(1), 244–256. https://doi.org/10.2166/wst.2021.614

Jonkers, W. A., de Vos, W. M., & te Brinke, E. (2024). Asymmetric polyelectrolyte multilayer membranes: Influence of bottom section polycation on layer growth and retention mechanisms. Journal of Membrane Science, 698. https://doi.org/10.1016/j.memsci.2024.122577

Junker, M. A., te Brinke, E., Vall Compte, C. M., Lammertink, R. G. H., de Grooth, J., & de Vos, W. M. (2023). Asymmetric polyelectrolyte multilayer nanofiltration membranes: Structural characterisation via transport phenomena. Journal of Membrane Science, 681. https://doi.org/10.1016/j.memsci.2023.121718

Kim, D. W., Choi, J., Kim, D., & Jung, H.-T. (2016). Enhanced water permeation based on nanoporous multilayer graphene membranes: the role of pore size and density. Journal of Materials Chemistry A, 4(45), 17773–17781. https://doi.org/10.1039/C6TA06381K

Koyuncu, I., Eryildiz, B., Kaya, R., Karakus, Y., Zakeri, F., Khataee, A., & Vatanpour, V. (2023). Modification of reinforced hollow fiber membranes with WO3 nanosheets for treatment of textile wastewater by membrane bioreactor. Journal of Environmental Management, 326. https://doi.org/10.1016/j.jenvman.2022.116758

Lang, M., Luo, J., Wan, Y., Wang, X., Chen, X., & Zeng, G. (2025). Dual-functional reverse osmosis membranes: A novel Approach to Combat biofouling with enhanced antibacterial and Antiadhesion properties. Journal of Membrane Science, 718, 123699. https://doi.org/10.1016/j.memsci.2025.123699

Li, S., Luo, J., Hang, X., Zhao, S., & Wan, Y. (2019). Removal of polycyclic aromatic hydrocarbons by nanofiltration membranes: Rejection and fouling mechanisms. Journal of Membrane Science, 582, 264–273. https://doi.org/10.1016/J.MEMSCI.2019.04.008

Livazovic, S., Li, Z., Behzad, A. R., Peinemann, K. V., & Nunes, S. P. (2015). Cellulose multilayer membranes manufacture with ionic liquid. Journal of Membrane Science, 490, 282–293. https://doi.org/10.1016/J.MEMSCI.2015.05.009

Loske, L., Nakagawa, K., Yoshioka, T., & Matsuyama, H. (2020). 2D nanocomposite membranes: Water purification and fouling mitigation. In Membranes (Vol. 10, Issue 10, pp. 1–40). MDPI AG. https://doi.org/10.3390/membranes10100295

Niu, F., Huang, M., Cai, T., & Meng, L. (2018). Effect of Membrane Thickness on Properties of FO Membranes with Nanofibrous Substrate. IOP Conference Series: Earth and Environmental Science, 170, 052005. https://doi.org/10.1088/1755-1315/170/5/052005

Panda, S. R., Mukherjee, M., & De, S. (2015). Preparation, characterization and humic acid removal capacity of chitosan coated iron-oxide- polyacrylonitrile mixed matrix membrane. Journal of Water Process Engineering, 6, 93–104. https://doi.org/https://doi.org/10.1016/j.jwpe.2015.03.007

Regenspurg, J. A., Jonkers, W. A., Junker, M. A., Achterhuis, I., te Brinke, E., & de Vos, W. M. (2024). Polyelectrolyte multilayer membranes: An experimental review. Desalination, 583. https://doi.org/10.1016/j.desal.2024.117693

Rossary, M. D., Djunaedi, J. K. P., Prinasti Riyantoro, T., & Setiawati, A. (2025). Tailoring Strategy of Chitosan-based Hydrogel for Improving Wound Healing: A Systematic Review. Trends in Sciences, 22(11), 11023. https://doi.org/10.48048/tis.2025.11023

Taaca, K. L. M., Nakajima, H., Thumanu, K., Prieto, E. I., & Vasquez, M. R. (2023). Network formation and differentiation of chitosan–acrylic acid hydrogels using X-ray absorption spectroscopy and multivariate analysis of Fourier transform infrared spectra. Journal of Electron Spectroscopy and Related Phenomena, 267. https://doi.org/10.1016/j.elspec.2023.147372

Tang, Y., Cai, Z., Sun, X., Chong, C., Yan, X., Li, M., & Xu, J. (2022). Electrospun Nanofiber-Based Membranes for Water Treatment. In Polymers (Vol. 14, Issue 10). MDPI. https://doi.org/10.3390/polym14102004

Tijing, L. D., Woo, Y. C., Choi, J.-S., Lee, S., Kim, S.-H., & Shon, H. K. (2015). Fouling and its control in membrane distillation—A review. Journal of Membrane Science, 475, 215–244. https://doi.org/https://doi.org/10.1016/j.memsci.2014.09.042

Turk, O. K., Cakmakci, M., Zengin, I. H., Karadag, D., & Yuksel, E. (2025). Improving PFAS Rejection by Ultrafiltration Membranes via Polyelectrolyte Multilayer Coating. Membranes, 15(6). https://doi.org/10.3390/membranes15060172

Wang, Z., Wang, Z., Lin, S., Jin, H., Gao, S., Zhu, Y., & Jin, J. (2018). Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04467-3

Xiang, J., Wang, X., Ding, M., Tang, X., Zhang, S., Zhang, X., & Xie, Z. (2022a). The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance. Chemosphere, 294. https://doi.org/10.1016/j.chemosphere.2022.133728

Xiang, J., Wang, X., Ding, M., Tang, X., Zhang, S., Zhang, X., & Xie, Z. (2022b). The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance. Chemosphere, 294. https://doi.org/10.1016/j.chemosphere.2022.133728

Xu, X., Zhang, H., Yu, M., Wang, Y., Gao, T., & Yang, F. (2019). Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control. Science of The Total Environment, 697, 134050. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134050

Zhang, R., Liu, Y., He, M., Su, Y., Zhao, X., Elimelech, M., & Jiang, Z. (2016). Antifouling membranes for sustainable water purification: Strategies and mechanisms. In Chemical Society Reviews (Vol. 45, Issue 21, pp. 5888–5924). Royal Society of Chemistry. https://doi.org/10.1039/c5cs00579e

Zhu, L., Guo, X., Chen, Y., Chen, Z., Lan, Y., Hong, Y., & Lan, W. (2022). Graphene Oxide Composite Membranes for Water Purification. ACS Applied Nano Materials, 5(3), 3643–3653. https://doi.org/10.1021/acsanm.1c04322

Downloads

Published

2025-10-31

Issue

Section

Articles