Membran Berbasis Biopolimer untuk Aplikasi DMFC (Direct Methanol Fuel Cell): Kajian Mekanisme, Modifikasi, dan Prospek Masa Depan
Keywords:
Membran, Biopolimer, Sel Bahan BakarAbstract
Meningkatnya kebutuhan akan sistem konversi energi yang berkelanjutan telah mendorong penelitian intensif terhadap membran penukar proton berbasis biopolimer sebagai alternatif potensial membran perfluorosulfonic acid (PFSA) komersial untuk aplikasi Direct Methanol Fuel Cell (DMFC). Studi ini mensintesis temuan dari lima belas publikasi terbaru yang mengkaji membran berbasis chitosan, selulosa, dan nanocellulose yang dimodifikasi melalui proses sulfonasi, crosslinking, penambahan nanofiller, serta pembentukan hibrida polielektrolit. Secara umum, membran biopolimer termodifikasi menunjukkan peningkatan konduktivitas proton dalam kisaran 10⁻³–10⁻² S/cm serta penurunan permeabilitas metanol hingga satu hingga dua orde lebih rendah dibandingkan Nafion, yang terutama disebabkan oleh terbentuknya jalur difusi berliku dan domain ionik yang lebih terorganisasi. Sejumlah studi juga melaporkan nilai open circuit voltage (OCV) yang lebih tinggi daripada membran PFSA akibat berkurangnya penetrasi metanol, meskipun densitas daya maksimum masih lebih rendah karena hambatan transport proton dan keterbatasan stabilitas jangka panjang. Evaluasi durabilitas menunjukkan bahwa membran yang diperkuat nanofiller atau difungsionalisasi secara kimia memiliki ketahanan oksidatif dan termal yang lebih baik, tetapi tetap mengalami degradasi performa setelah siklus hidrasi–dehidrasi berulang. Secara keseluruhan, bukti kolektif ini menegaskan bahwa meskipun tantangan masih ada, membran berbasis biopolimer menunjukkan prospek kuat sebagai kandidat generasi baru yang lebih ekonomis, ramah lingkungan, dan kompetitif untuk aplikasi DMFC
References
Batool, M., Shafeeq, A., Haider, B., & Ahmad, N. M. (2021). Tio2 nanoparticle filler-based mixed-matrix pes/ca nanofiltration membranes for enhanced desalination. Membranes, 11(6), 1–17. https://doi.org/10.3390/membranes11060433
Chen, G. Q., Kanehashi, S., Doherty, C. M., Hill, A. J., & Kentish, S. E. (2015). Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification. Journal of Membrane Science, 487, 249–255. https://doi.org/10.1016/J.MEMSCI.2015.03.074
Du, X., Zhang, Z., Carlson, K. H., Lee, J., & Tong, T. (2018). Membrane fouling and reusability in membrane distillation of shale oil and gas produced water: Effects of membrane surface wettability. Journal of Membrane Science, 567, 199–208. https://doi.org/10.1016/j.memsci.2018.09.036
Figueiredo, A. S., Sánchez-Loredo, M. G., de Pinho, M. N., & Minhalma, M. (2025). Surface-Charge Characterization of Nanocomposite Cellulose Acetate/Silver Membranes and BSA Permeation Performance. Membranes, 15(2), 61. https://doi.org/10.3390/membranes15020061
Gebru, K. A., & Das, C. (2017). Preparation and characterization of CA−PEG−TiO2 membranes: Effect of PEG and TiO2 on morphology, flux and fouling performance. Journal of Membrane Science and Research, 3(2), 90–101. https://doi.org/10.22079/jmsr.2016.22820
Jasim, S. A., Al Maimuri, N. M. L., Hashim, A., Abbas, M. H., Hadi, A., & Ibrahim, H. (2025). Fabrication and Enhancing the Features of Chitosan/SnO2-ZnO Nanocomposites Films for Optoelectronics and Biological Applications. Trends in Sciences, 22(10), 10534. https://doi.org/10.48048/tis.2025.10534
Jia, X., Li, K., Wang, B., Zhao, Z. C., Hou, D., & Wang, J. (2022). Membrane cleaning in membrane distillation of reverse osmosis concentrate generated in landfill leachate treatment. Water Science and Technology, 85(1), 244–256. https://doi.org/10.2166/wst.2021.614
Jonkers, W. A., de Vos, W. M., & te Brinke, E. (2024). Asymmetric polyelectrolyte multilayer membranes: Influence of bottom section polycation on layer growth and retention mechanisms. Journal of Membrane Science, 698. https://doi.org/10.1016/j.memsci.2024.122577
Junker, M. A., te Brinke, E., Vall Compte, C. M., Lammertink, R. G. H., de Grooth, J., & de Vos, W. M. (2023). Asymmetric polyelectrolyte multilayer nanofiltration membranes: Structural characterisation via transport phenomena. Journal of Membrane Science, 681. https://doi.org/10.1016/j.memsci.2023.121718
Kim, D. W., Choi, J., Kim, D., & Jung, H.-T. (2016). Enhanced water permeation based on nanoporous multilayer graphene membranes: the role of pore size and density. Journal of Materials Chemistry A, 4(45), 17773–17781. https://doi.org/10.1039/C6TA06381K
Koyuncu, I., Eryildiz, B., Kaya, R., Karakus, Y., Zakeri, F., Khataee, A., & Vatanpour, V. (2023). Modification of reinforced hollow fiber membranes with WO3 nanosheets for treatment of textile wastewater by membrane bioreactor. Journal of Environmental Management, 326. https://doi.org/10.1016/j.jenvman.2022.116758
Lang, M., Luo, J., Wan, Y., Wang, X., Chen, X., & Zeng, G. (2025). Dual-functional reverse osmosis membranes: A novel Approach to Combat biofouling with enhanced antibacterial and Antiadhesion properties. Journal of Membrane Science, 718, 123699. https://doi.org/10.1016/j.memsci.2025.123699
Li, S., Luo, J., Hang, X., Zhao, S., & Wan, Y. (2019). Removal of polycyclic aromatic hydrocarbons by nanofiltration membranes: Rejection and fouling mechanisms. Journal of Membrane Science, 582, 264–273. https://doi.org/10.1016/J.MEMSCI.2019.04.008
Livazovic, S., Li, Z., Behzad, A. R., Peinemann, K. V., & Nunes, S. P. (2015). Cellulose multilayer membranes manufacture with ionic liquid. Journal of Membrane Science, 490, 282–293. https://doi.org/10.1016/J.MEMSCI.2015.05.009
Loske, L., Nakagawa, K., Yoshioka, T., & Matsuyama, H. (2020). 2D nanocomposite membranes: Water purification and fouling mitigation. In Membranes (Vol. 10, Issue 10, pp. 1–40). MDPI AG. https://doi.org/10.3390/membranes10100295
Niu, F., Huang, M., Cai, T., & Meng, L. (2018). Effect of Membrane Thickness on Properties of FO Membranes with Nanofibrous Substrate. IOP Conference Series: Earth and Environmental Science, 170, 052005. https://doi.org/10.1088/1755-1315/170/5/052005
Panda, S. R., Mukherjee, M., & De, S. (2015). Preparation, characterization and humic acid removal capacity of chitosan coated iron-oxide- polyacrylonitrile mixed matrix membrane. Journal of Water Process Engineering, 6, 93–104. https://doi.org/https://doi.org/10.1016/j.jwpe.2015.03.007
Regenspurg, J. A., Jonkers, W. A., Junker, M. A., Achterhuis, I., te Brinke, E., & de Vos, W. M. (2024). Polyelectrolyte multilayer membranes: An experimental review. Desalination, 583. https://doi.org/10.1016/j.desal.2024.117693
Rossary, M. D., Djunaedi, J. K. P., Prinasti Riyantoro, T., & Setiawati, A. (2025). Tailoring Strategy of Chitosan-based Hydrogel for Improving Wound Healing: A Systematic Review. Trends in Sciences, 22(11), 11023. https://doi.org/10.48048/tis.2025.11023
Taaca, K. L. M., Nakajima, H., Thumanu, K., Prieto, E. I., & Vasquez, M. R. (2023). Network formation and differentiation of chitosan–acrylic acid hydrogels using X-ray absorption spectroscopy and multivariate analysis of Fourier transform infrared spectra. Journal of Electron Spectroscopy and Related Phenomena, 267. https://doi.org/10.1016/j.elspec.2023.147372
Tang, Y., Cai, Z., Sun, X., Chong, C., Yan, X., Li, M., & Xu, J. (2022). Electrospun Nanofiber-Based Membranes for Water Treatment. In Polymers (Vol. 14, Issue 10). MDPI. https://doi.org/10.3390/polym14102004
Tijing, L. D., Woo, Y. C., Choi, J.-S., Lee, S., Kim, S.-H., & Shon, H. K. (2015). Fouling and its control in membrane distillation—A review. Journal of Membrane Science, 475, 215–244. https://doi.org/https://doi.org/10.1016/j.memsci.2014.09.042
Turk, O. K., Cakmakci, M., Zengin, I. H., Karadag, D., & Yuksel, E. (2025). Improving PFAS Rejection by Ultrafiltration Membranes via Polyelectrolyte Multilayer Coating. Membranes, 15(6). https://doi.org/10.3390/membranes15060172
Wang, Z., Wang, Z., Lin, S., Jin, H., Gao, S., Zhu, Y., & Jin, J. (2018). Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04467-3
Xiang, J., Wang, X., Ding, M., Tang, X., Zhang, S., Zhang, X., & Xie, Z. (2022a). The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance. Chemosphere, 294. https://doi.org/10.1016/j.chemosphere.2022.133728
Xiang, J., Wang, X., Ding, M., Tang, X., Zhang, S., Zhang, X., & Xie, Z. (2022b). The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance. Chemosphere, 294. https://doi.org/10.1016/j.chemosphere.2022.133728
Xu, X., Zhang, H., Yu, M., Wang, Y., Gao, T., & Yang, F. (2019). Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control. Science of The Total Environment, 697, 134050. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134050
Zhang, R., Liu, Y., He, M., Su, Y., Zhao, X., Elimelech, M., & Jiang, Z. (2016). Antifouling membranes for sustainable water purification: Strategies and mechanisms. In Chemical Society Reviews (Vol. 45, Issue 21, pp. 5888–5924). Royal Society of Chemistry. https://doi.org/10.1039/c5cs00579e
Zhu, L., Guo, X., Chen, Y., Chen, Z., Lan, Y., Hong, Y., & Lan, W. (2022). Graphene Oxide Composite Membranes for Water Purification. ACS Applied Nano Materials, 5(3), 3643–3653. https://doi.org/10.1021/acsanm.1c04322
