PERAN MODEL ZEBRAFISH (Danio rerio) DALAM SKRINING SENYAWA BAHAN ALAM NUSANTARA: TINJAUAN DAN PROSPEKNYA DI WILAYAH WALLACEA
Keywords:
Zebrafish, Skrining senyawa alam, Wallacea, BioaktivitasAbstract
Pemanfaatan model zebrafish (Danio rerio) dalam skrining senyawa bahan alam terus berkembang karena kemiripan biologisnya dengan vertebrata lain, perkembangan embrio yang cepat, serta sensitivitas tinggi terhadap perubahan fenotipik. Kawasan Wallacea yang kaya keanekaragaman hayati menyediakan sumber metabolit sekunder dengan potensi bioaktivitas yang belum banyak dieksplorasi, sehingga diperlukan telaah mengenai prospek penggunaan zebrafish sebagai platform uji awal. Artikel ini mengulas peran zebrafish dalam skrining toksisitas dan bioaktivitas senyawa alam Nusantara dengan penekanan pada implementasinya di Wallacea. Kajian dilakukan melalui penelusuran literatur dari basis data nasional dan internasional serta analisis terhadap tren penggunaan model ini. Hasil telaah menunjukkan bahwa zebrafish merupakan model yang efisien dan serbaguna untuk evaluasi toksisitas akut, pengamatan morfologi, aktivitas angiogenik dan antiangiogenik, respons inflamasi, serta perubahan perilaku. Integrasi model transgenik dan bioassay multi-level memungkinkan identifikasi dini mekanisme aksi senyawa. Selain itu, pengembangan Wallacea Natural Product Bioactivity Library berpotensi memperkuat pemetaan kandidat senyawa unggul dari flora endemik. Secara keseluruhan, skrining berbasis zebrafish menawarkan pendekatan cepat, sensitif, dan terstandarisasi yang dapat mempercepat eksplorasi bahan alam serta mendukung pengembangan riset pra-klinik di wilayah Wallacea.
References
Agus W, Suganda A G, & Fidrianny I. (2021). Acute toxicity of jalawure (Tacca leontopetaloides (L.) Kuntze) and gadung tikus (Tacca palmata Blume) using zebrafish (Danio rerio) embryos as a model. International Journal of Research in Pharmaceutical Sciences, 12(2), 1247–1253. https://doi.org/10.26452/ijrps.v12i2.4667
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., Orhan, I. E., Banach, M., Rollinger, J. M., Barreca, D., Weckwerth, W., Bauer, R., Bayer, E. A., Majeed, M., Bishayee, A., Bochkov, V., Bonn, G. K., Braidy, N., Bucar, F., Cifuentes, A., D’Onofrio, G., Bodkin, M., … Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
Chen, K., Wang, C., Fan, Y., Gu, J., Han, Z., Wang, Y., Gao, L., & Zeng, H. (2018). Identification of mundoserone by zebrafish in vivo screening as a natural product with anti-angiogenic activity. Experimental and Therapeutic Medicine, 16(6), 4562–4568. https://doi.org/10.3892/etm.2018.6748
Choi, T. Y., Choi, T. I., Lee, Y. R., Choe, S. K., & Kim, C. H. (2021). Zebrafish as an animal model for biomedical research. In Experimental and Molecular Medicine (Vol. 53, Issue 3, pp. 310–317). Springer Nature. https://doi.org/10.1038/s12276-021-00571-5
Howe, K. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Journal of the American Association of Nurse Anesthetists, 496(7446), 498–503. https://doi.org/10.1038/nature12111.The
Jannaturrayyan, S., Sukenti, K., Rohyani, I. S., & Sukiman. (2020). Ethnobotanical Study on Plants Used by Local People in Dusun Beleq, Gumantar Village, North Lombok Regency. Biosaintifika, 12(2), 203–212. https://doi.org/10.15294/biosaintifika.v12i2.23807
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310. https://doi.org/10.1002/aja.1002030302
Kithcart, A., & MacRae, C. A. (2017). Using Zebrafish for High-Throughput Screening of Novel Cardiovascular Drugs. JACC: Basic to Translational Science, 2(1), 1–12. https://doi.org/10.1016/j.jacbts.2017.01.004
Lawrence, C. (2007). The husbandry of zebrafish (Danio rerio): A review. In Aquaculture (Vol. 269, Issues 1–4, pp. 1–20). https://doi.org/10.1016/j.aquaculture.2007.04.077
Lieschke, G. J., & Currie, P. D. (2007). Animal models of human disease: Zebrafish swim into view. In Nature Reviews Genetics (Vol. 8, Issue 5, pp. 353–367). https://doi.org/10.1038/nrg2091
Liu, C., Li, J., Wang, D., Liu, J., Liu, K., Li, P., & Zhang, Y. (2024). Recent Advances of the Zebrafish Model in the Discovery of Marine Bioactive Molecules. Marine Drugs, 22(12), 1–25. https://doi.org/10.3390/md22120540
MacRae, C. A., & Peterson, R. T. (2023). Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology. Annual Review of Pharmacology and Toxicology, 63, 43–64. https://doi.org/10.1146/annurev-pharmtox-051421-105617
Mannan, A., Malik, A., & Zhiddiq, S. (2024). Jurnal Environmental Scienc e. Jurnal Environmental Science, 6(2), 36–52.
Struebig, M. J., Aninta, S. G., Beger, M., Bani, A., Barus, H., Brace, S., Davies, Z. G., De Brauwer, M., Diele, K., Djakiman, C., Djamaluddin, R., Drinkwater, R., Dumbrell, A., Evans, D., Fusi, M., Herrera-Alsina, L., Iskandar, D. T., Jompa, J., Juliandi, B., … Supriatna, J. (2022). Safeguarding Imperiled Biodiversity and Evolutionary Processes in the Wallacea Center of Endemism. BioScience, 72(11), 1118–1130. https://doi.org/10.1093/biosci/biac085
Syamsiah, S., Hiola, S. F., Mu’nisa, A., & Jumadi, O. (2016). Study on Medicinal Plants Used by the Ethnic Mamuju in West Sulawesi, Indonesia. Journal of Tropical Crop Science, 3(2), 43–48. https://doi.org/10.29244/jtcs.3.2.43-48
Tabassum, N., Tai, H., Jung, D. W., & Williams, D. R. (2015). Fishing for Nature’s Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2015/287847
Teame, T., Zhang, Z., Ran, C., Zhang, H., Yang, Y., Ding, Q., Xie, M., Gao, C., Ye, Y., Duan, M., & Zhou, Z. (2019). The use of zebrafish (Danio rerio) as biomedical models. Animal Frontiers, 9(3), 68–77. https://doi.org/10.1093/af/vfz020
Wilson, B. A. P., Thornburg, C. C., Henrich, C. J., Grkovic, T., & O’Keefe, B. R. (2020a). Creating and screening natural product libraries. Natural Product Reports, 37(7), 893–918. https://doi.org/10.1039/c9np00068b
Yozzo, K. L., Isales, G. M., Raftery, T. D., & Volz, D. C. (2013). High-content screening assay for identification of chemicals impacting cardiovascular function in zebrafish embryos. Environmental Science and Technology, 47(19), 11302–11310. https://doi.org/10.1021/es403360y
Zhang, P., Liu, N., Xue, M., Zhang, M., Xiao, Z., Xu, C., Fan, Y., Liu, W., Qiu, J., Zhang, Q., & Zhou, Y. (2023). Anti-Inflammatory and Antioxidant Properties of Squalene in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio). International Journal of Molecular Sciences, 24(10). https://doi.org/10.3390/ijms24108518
