POTENSI EKSTRAK DAUN JAMBU BIJI (Psidium guajava L.) SEBAGAI INHIBITOR TIROSINASE: STUDI IN SILICO DAN PREDIKSI ADMET
Keywords:
P. guajava, Docking molekuler, TirosinaseAbstract
Melanin yang diproduksi oleh melanosom memainkan peran penting dalam perlindungan fotokulit terhadap kerusakan oksidatif akibat sinar ultraviolet (UV), namun kelebihan produksi pigmen ini atau distribusinya yang abnormal dapat menyebabkan hiperpigmentasi termasuk melasma, bintik-bintik, ephelides, dan lentigo. Cara untuk mencegah gangguan hiperpigmentasi salah satunya adalah menghambat aktivitas tirosinase. Senyawa fenolik dan senyawa yang mengandung karbonil atau senyawa antioksidan lainnya dipercaya dapat menghambat tirosinase. Psidium guajava L. merupakan salah satu tanaman dalam famili Myrtaceae yang mengandung banyak senyawa bioaktif yang mungkin berperan sebagai inhibitor tirosinase. Tujuan penelitian ini adalah untuk mengevaluasi potensi senyawa dari ekstrak daun P. guajava sebagai inhibitor tirosinase melalui studi in silico dan prediksi ADMET. Analisis docking molekuler dilakukan terhadap tirosinase (PDB ID: 5M8O) yang berkompleks dengan ligan alami tropolone. Hasil penambatan menunjukkan sebagian besar senyawa mampu berinteraksi dengan sisi aktif enzim. Senyawa 7 dan 34 menunjukkan afinitas pengikatan terbaik dengan nilai masing-masing sebesar -6,50 dan -6,55 kkal/mol, dibandingkan ligan alami yang memiliki nilai -5,03 kkal/mol. Interaksi keduanya melibatkan residu asam amino yang serupa dengan ligan alami, yaitu Ser394, His192, His215, His377, dan His381. Berdasarkan analisis ADMET, kedua senyawa memenuhi aturan Lipinski, memiliki absorpsi yang baik, dan potensi toksisitas rendah. Dapat disimpulkan bahwa kedua senyawa diprediksi berpotensi sebagai inhibitor tirosinase.
References
Amadike Ugbogu, E., Emmanuel, O., Ebubechi Uche, M., Dike Dike, E., Chukwuebuka Okoro, B., Ibe, C., Chibueze Ude, V., Nwabu Ekweogu, C., & Chinyere Ugbogu, O. (2022). The ethnobotanical, phytochemistry and pharmacological activities of Psidium guajava L. Arabian Journal of Chemistry, 15(5), 103759. https://doi.org/10.1016/J.ARABJC.2022.103759
Ando, H., Kondoh, H., Ichihashi, M., & Hearing, V. J. (2007). Approaches to Identify Inhibitors of Melanin Biosynthesis via the Quality Control of Tyrosinase. Journal of Investigative Dermatology, 127(4), 751–761. https://doi.org/10.1038/SJ.JID.5700683
Baskar, S., Palapetta, S. C., Harichandran, G., Indumathi, G., Babu, L. G., Raja, J. E., Praveena Kumara, K. M., & Karunakaran, K. (2025). Synthesis, characterization, comparative study, DFT analysis, ADMET prediction and molecular docking study of Thiophen-2-yl and 4-pyridinyl derivatives of bis (4-hydroxy-2H-chromen-2-one). Results in Chemistry, 18, 102679. https://doi.org/10.1016/J.RECHEM.2025.102679
Clemen-Pascual, L. M., Macahig, R. A. S., & Rojas, N. R. L. (2022). Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicology Reports, 9, 22–35. https://doi.org/10.1016/J.TOXREP.2021.12.002
Jung, H. J., Noh, S. G., Park, Y., Kang, D., Chun, P., Chung, H. Y., & Moon, H. R. (2019). In vitro and in silico insights into tyrosinase inhibitors with (E)-benzylidene-1-indanone derivatives. Computational and Structural Biotechnology Journal, 17, 1255–1264. https://doi.org/10.1016/J.CSBJ.2019.07.017
Kang, Z. C., Yen, M. T., Chiu, C. K., Wu, H. C., Huang, S. L., Tai, S. P., & Wang, B. Sen. (2013). The inhibitory effects of aqueous extract from guava twigs, Psidium guajava L., on mutation and oxidative damage. Journal of Chemistry, 2013, 1–7. https://doi.org/10.1155/2013/561905
Khedr, S. I., Mokhamer, E. H. M., Hassan, A. A. A., El-Feki, A. S., Elkhodary, G. M., & El-Gerbed, M. S. A. (2021). Psidium guajava Linn leaf ethanolic extract: In vivo giardicidal potential with ultrastructural damage, anti-inflammatory and antioxidant effects. Saudi Journal of Biological Sciences, 28(1), 427–439. https://doi.org/10.1016/J.SJBS.2020.10.026
Lai, X., Wichers, H. J., Soler-Lopez, M., & Dijkstra, B. W. (2017). Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angewandte Chemie - International Edition, 56(33), 9812–9815. https://doi.org/10.1002/ANIE.201704616
Lara-Guzman, O. J., Tabares-Guevara, J. H., Leon-Varela, Y. M., Álvarez, R. M., Roldan, M., Sierra, J. A., Londoño-Londõno, J. A., & Ramirez-Pineda, J. R. (2012). Proatherogenic macrophage activities are targeted by the flavonoid quercetin. The Journal of Pharmacology and Experimental Therapeutics, 343(2), 296–306. https://doi.org/10.1124/JPET.112.196147
Pires, D. A. T., Guedes, I. A., Pereira, W. L., Teixeira, R. R., Dardenne, L. E., Nascimento, C. J., & Figueroa-Villar, J. D. (2021). Isobenzofuran-1(3H)-ones as new tyrosinase inhibitors: Biological activity and interaction studies by molecular docking and NMR. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1869(2), 140580. https://doi.org/10.1016/J.BBAPAP.2020.140580
Sahin, S. C. (2018). The potential of Arthrospira platensis extract as a tyrosinase inhibitor for pharmaceutical or cosmetic applications. South African Journal of Botany, 119, 236–243. https://doi.org/10.1016/J.SAJB.2018.09.004
Sarfraz, H., Rehman, W., Rahim, F., Khan, S., Sardar, A., Iqbal, T., Zainab, Khan, Y., Islam, M. S., Tawfeek, A. M., Rasheed, L., & Hussain, R. (2026). Discovery and optimization of a novel series of pyrazole-linked oxadiazole conjugates as α-amylase inhibitors: In-silico DFT, ADMET-prediction, Toxicological assessment and Molecular docking insight. Journal of Molecular Structure, 1351, 144177. https://doi.org/10.1016/J.MOLSTRUC.2025.144177
Shukla, S., Park, J., Kim, D. H., Hong, S. Y., Lee, J. S., & Kim, M. (2016). Total phenolic content, antioxidant, tyrosinase and α-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control, 59, 854–861. https://doi.org/10.1016/J.FOODCONT.2015.07.003
Singh, B. P., Paul, S., Ferreira-Santos, P., Bhushan, B., Hati, S., Goel, G., & Udenigwe, C. (2025). In silico and molecular docking approaches in food-derived bioactive peptide discovery: Trends, challenges, and prospects. Food Research International, 222, 117637. https://doi.org/10.1016/J.FOODRES.2025.117637
Thibane, V. S., Ndhlala, A. R., Finnie, J. F., & Van Staden, J. (2019). Cosmeceutical efficiency by some plant extracts used traditionally for skin care in inhibiting tyrosinase activity in a human epidermal melanocyte (HEM) cell line. South African Journal of Botany, 126, 256–260. https://doi.org/10.1016/J.SAJB.2019.06.031
Wang, L., Wu, Y., Xie, J., Wu, S., & Wu, Z. (2018). Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Materials Science and Engineering: C, 86, 1–8. https://doi.org/10.1016/J.MSEC.2018.01.003
Wang, Y., Curtis-Long, M. J., Lee, B. W., Yuk, H. J., Kim, D. W., Tan, X. F., & Park, K. H. (2014). Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorganic & Medicinal Chemistry, 22(3), 1115–1120. https://doi.org/10.1016/J.BMC.2013.12.047
Yu, Z. Y., Xu, K., Wang, X., Wen, Y. T., Wang, L. J., Huang, D. Q., Chen, X. X., & Chai, W. M. (2022). Punicalagin as a novel tyrosinase and melanin inhibitor: Inhibitory activity and mechanism. LWT, 161, 113318. https://doi.org/10.1016/J.LWT.2022.113318
Zou, X., & Liu, H. (2023). A review of meroterpenoids and of their bioactivity from guava (Psidium guajava L.). Journal of Future Foods, 3(2), 142–154. https://doi.org/10.1016/J.JFUTFO.2022.12.005
