Literature Review: Nanoteknologi dalam Penghantaran Antibiotik sebagai Inovasi Peningkatan Efektivitas Terapi Infeksi Bakteri
Keywords:
infeksi bakteri, nanopartikel, nanoteknologi, penghantaran antibiotik, resistensi antimikrobaAbstract
Infeksi bakteri dan resistensi antimikroba (AMR) merupakan tantangan global yang memerlukan inovasi dalam terapi antibiotik. Salah satu penyebab utama kegagalan terapi antibiotik adalah keterbatasan penghantaran antibiotik ke lokasi infeksi secara efektif, terutama pada kasus infeksi biofilm dan bakteri intraseluler. Nanoteknologi menawarkan solusi melalui sistem penghantaran antibiotik berbasis nanopartikel, yang mampu meningkatkan bioavailabilitas, spesifisitas target, dan mengurangi efek samping sistemik. Artikel ini mengkaji berbagai jenis nanomaterial, termasuk nanopartikel lipid, polimerik, logam, silika mesopori, dan sistem stimuli-responsif, serta efektivitasnya dalam mengatasi infeksi bakteri. Hasil menunjukkan bahwa sistem penghantaran antibiotik berbasis nano ini mampu meningkatkan penetrasi antibiotik ke biofilm dan sel target, mengurangi resistensi, serta memungkinkan pelepasan obat terkontrol. Meskipun tantangan terkait toksisitas jangka panjang, biokompatibilitas, dan regulasi masih perlu diatasi, nanoteknologi tetap menjadi pendekatan yang menjanjikan dalam terapi infeksi bakteri di masa depan.
References
Alam, M. N., Raya, I., Ahmad, A., Taba, P., Putri, S. E., & Karim, H. (2024). Fabrication of Nanocomposite Membrane with Nanomaterial Filler for Desalination. In Indonesian Journal of Chemistry (Vol. 24, Issue 2, pp. 585–605). Gadjah Mada University. https://doi.org/10.22146/ijc.84308
Alandiyjany, M. N., Abdelaziz, A. S., Abdelfattah-Hassan, A., Hegazy, W. A. H., Hassan, A. A., Elazab, S. T., Mohamed, E. A. A., El-Shetry, E. S., Saleh, A. A., Elsawy, N. A., & Ibrahim, D. (2022). Novel In Vivo Assessment of Antimicrobial Efficacy of Ciprofloxacin Loaded Mesoporous Silica Nanoparticles against Salmonella typhimurium Infection. Pharmaceuticals, 15(3). https://doi.org/10.3390/ph15030357
Alsaleh, N. B., & Brown, J. M. (2018). Immune responses to engineered nanomaterials: Current understanding and challenges. In Current Opinion in Toxicology (Vol. 10, pp. 8–14). Elsevier B.V. https://doi.org/10.1016/j.cotox.2017.11.011
Bārzdiņa, A., Plotniece, A., Sobolev, A., Pajuste, K., Bandere, D., & Brangule, A. (2024). From Polymeric Nanoformulations to Polyphenols—Strategies for Enhancing the Efficacy and Drug Delivery of Gentamicin. In Antibiotics (Vol. 13, Issue 4). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/antibiotics13040305
Bouchmella, K., Lion, Q., Gervais, C., & Cardoso, M. B. (2023). Impact of Mesoporous Silica Functionalization Fine-Tuning on Antibiotic Uptake/Delivery and Bactericidal Activity. ACS Omega, 8(13), 12154–12164. https://doi.org/10.1021/acsomega.2c08065
Colognato, R., Park, M. V. D. Z., Wick, P., & de Jong, W. H. (2012). Interactions with the Human Body. In Adverse Effects of Engineered Nanomaterials: Exposure, Toxicology, and Impact on Human Health (pp. 3–24). Elsevier. https://doi.org/10.1016/B978-0-12-386940-1.00001-5
Elkassas, D., & Arafa, A. (2017). The innovative applications of therapeutic nanostructures in dentistry. In Nanomedicine: Nanotechnology, Biology, and Medicine (Vol. 13, Issue 4, pp. 1543–1562). Elsevier Inc. https://doi.org/10.1016/j.nano.2017.01.018
Fadeel, B. (2022). Understanding the immunological interactions of engineered nanomaterials: Role of the bio-corona. In Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology (Vol. 14, Issue 6). John Wiley and Sons Inc. https://doi.org/10.1002/wnan.1798
Ferreira, M., Ogren, M., Dias, J. N. R., Silva, M., Gil, S., Tavares, L., Aires-Da-silva, F., Gaspar, M. M., & Aguiar, S. I. (2021). Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules, 26(7). https://doi.org/10.3390/molecules26072047
Franco, D., Calabrese, G., Guglielmino, S. P. P., & Conoci, S. (2022). Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. In Microorganisms (Vol. 10, Issue 9). MDPI. https://doi.org/10.3390/microorganisms10091778
García, A., González, B., Harvey, C., Izquierdo-Barba, I., & Vallet-Regí, M. (2021a). Effective reduction of biofilm through photothermal therapy by gold core@shell based mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 328. https://doi.org/10.1016/j.micromeso.2021.111489
García, A., González, B., Harvey, C., Izquierdo-Barba, I., & Vallet-Regí, M. (2021b). Effective reduction of biofilm through photothermal therapy by gold core@shell based mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 328. https://doi.org/10.1016/j.micromeso.2021.111489
González, B., Colilla, M., Díez, J., Pedraza, D., Guembe, M., Izquierdo-Barba, I., & Vallet-Regí, M. (2018). Mesoporous silica nanoparticles decorated with polycationic dendrimers for infection treatment. Acta Biomaterialia, 68, 261–271. https://doi.org/10.1016/j.actbio.2017.12.041
Han, L., Liu, X.-W., Zang, T., Ren, H., Liang, D.-S., Bai, S.-C., Li, C., Liao, X.-P., Liu, Y.-H., Zhang, C., & Sun, J. (2022). H2S responsive PEGylated poly (lipoic acid) with ciprofloxacin for targeted therapy of Salmonella. Journal of Controlled Release, 351, 896–906.
Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. In International Journal of Nanomedicine (Vol. 12, pp. 8211–8225). Dove Medical Press Ltd. https://doi.org/10.2147/IJN.S132163
Hussain, S., Joo, J., Kang, J., Kim, B., Braun, G. B., She, Z. G., Kim, D., Mann, A. P., Mölder, T., Teesalu, T., Carnazza, S., Guglielmino, S., Sailor, M. J., & Ruoslahti, E. (2018). Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nature Biomedical Engineering, 2(2), 95–103. https://doi.org/10.1038/s41551-017-0187-5
Jiang, H., Li, L., Li, Z., & Chu, X. (2024). Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. In Biomedical Microdevices (Vol. 26, Issue 1). Springer. https://doi.org/10.1007/s10544-023-00686-8
Kou, L., Bhutia, Y. D., Yao, Q., He, Z., Sun, J., & Ganapathy, V. (2018). Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. In Frontiers in Pharmacology (Vol. 9, Issue JAN). Frontiers Media S.A. https://doi.org/10.3389/fphar.2018.00027
Li, T., Tang, Z., Zhang, R., Challa, M., Gong, H., Gong, Z., Zhang, S.-L., Guo, J., & He, Y. (2025). Targeted vancomycin delivery via in situ albumin conjugation and acid-triggered drug release for reduced nephrotoxicity. European Journal of Medicinal Chemistry, 291.
Liao, C. C., Yu, H. P., Yang, S. C., Alalaiwe, A., Dai, Y. S., Liu, F. C., & Fang, J. Y. (2021). Multifunctional lipid-based nanocarriers with antibacterial and anti‐inflammatory activities for treating MRSA bacteremia in mice. Journal of Nanobiotechnology, 19(1). https://doi.org/10.1186/s12951-021-00789-5
Liu, Q., Zhang, Y., Huang, J., Xu, Z., Li, X., Yang, J., Huang, H., Tang, S., Chai, Y., Lin, J., Yang, C., Liu, J., & Lin, S. (2022). Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing. Journal of Nanobiotechnology, 20(1). https://doi.org/10.1186/s12951-022-01600-9
Makhlouf, Z., Ali, A. A., & Al-Sayah, M. H. (2023). Liposomes-Based Drug Delivery Systems of Anti-Biofilm Agents to Combat Bacterial Biofilm Formation. In Antibiotics (Vol. 12, Issue 5). MDPI. https://doi.org/10.3390/antibiotics12050875
Martínez-Carmona, M., Izquierdo-Barba, I., Colilla, M., & Vallet-Regí, M. (2019). Concanavalin A-targeted mesoporous silica nanoparticles for infection treatment. Acta Biomaterialia, 96, 547–556. https://doi.org/10.1016/j.actbio.2019.07.001
Montalvo-Quirós, S., Gómez-Graña, S., Vallet-Regí, M., Prados-Rosales, R. C., González, B., & Luque-Garcia, J. L. (2021). Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids and Surfaces B: Biointerfaces, 197. https://doi.org/10.1016/j.colsurfb.2020.111405
Moorcroft, S. C. T., Jayne, D. G., Evans, S. D., & Ong, Z. Y. (2018). Stimuli-Responsive Release of Antimicrobials Using Hybrid Inorganic Nanoparticle-Associated Drug-Delivery Systems. In Macromolecular Bioscience (Vol. 18, Issue 12). Wiley-VCH Verlag. https://doi.org/10.1002/mabi.201800207
Nyandoro, V. O., Ismail, E. A., Tageldin, A., Gafar, M. A., Peters, X. Q., Mautsoe, R., Omolo, C. A., & Govender, T. (2025). Potential of nanocarrier-mediated delivery of vancomycin for MRSA infections. In Expert Opinion on Drug Delivery. Taylor and Francis Ltd. https://doi.org/10.1080/17425247.2025.2459756
Ribeiro, A. I., Dias, A. M., & Zille, A. (2022). Synergistic Effects between Metal Nanoparticles and Commercial Antimicrobial Agents: A Review. In ACS Applied Nano Materials (Vol. 5, Issue 3, pp. 3030–3064). American Chemical Society. https://doi.org/10.1021/acsanm.1c03891
Sarma, P. P., Rai, A., & Baruah, P. K. (2024). Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance. In Antibiotics (Vol. 13, Issue 2). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/antibiotics13020124
Shim, H. (2024). Self-assembling T7 phage syringes with modular genomes for targeted delivery of penicillin against β-lactam-resistant Escherichia coli. https://doi.org/https://doi.org/10.48550/arXiv.2412.18687
Singla, A., Simbassa, S. B., Chirra, B., Gairola, A., Southerland, M. R., Shah, K. N., Rose, R. E., Chen, Q., Basharat, A., Baeza, J., Raina, R., Chapman, M. J., Hassan, A. M., Ivanov, I., Sen, A., Wu, H. J., & Cannon, C. L. (2022). Hetero-Multivalent Targeted Liposomal Drug Delivery to Treat Pseudomonas aeruginosa Infections. ACS Applied Materials and Interfaces , 14(36), 40724–40737. https://doi.org/10.1021/acsami.2c12943
Spirescu, V. A., Chircov, C., Grumezescu, A. M., & Andronescu, E. (2021). Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. In Polymers (Vol. 13, Issue 5, pp. 1–27). MDPI AG. https://doi.org/10.3390/polym13050724
Taheri, M., Arabestani, M. R., Kalhori, F., Soleimani Asl, S., Asgari, M., & Hosseini, S. M. (2024). Antibiotics-encapsulated nanoparticles as an antimicrobial agent in the treatment of wound infection. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1435151
Ventola, C. lee. (2012). The Nanomedicine Revolution, Part 1: Emerging Concepts. P&T, 37(9), 512–525. https://pubmed.ncbi.nlm.nih.gov/23066345/
Wang, S., Ding, H., Li, L., Zhao, R., & Chai, N. (2025). Targeted nanomedicines for the treatment of Helicobacter pylori infection. Materials Today Bio, 32, 101820. https://doi.org/10.1016/j.mtbio.2025.101820
WHO. (2023). Antimicrobial Resistance. World Health Organization.
Xiu, W., Shan, J., Yang, K., Xiao, H., Yuwen, L., & Wang, L. (2021). Recent development of nanomedicine for the treatment of bacterial biofilm infections. In VIEW (Vol. 2, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/VIW.20200065
Xu, J., Zhou, X., Gao, Z., Song, Y., & Schmuki, P. (2016). Visible‐Light‐Triggered Drug Release from TiO 2 Nanotube Arrays: A Controllable Antibacterial Platform . Angewandte Chemie, 128(2), 603–607. https://doi.org/10.1002/ange.201508710
Yadav, H. K. S., Almokdad, A. A., Shaluf, S. I. M., & Debe, M. S. (2018). Polymer-Based Nanomaterials for Drug-Delivery Carriers. In Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery (pp. 531–556). Elsevier Science Ltd. https://doi.org/10.1016/B978-0-12-814033-8.00017-5
Yayehrad, A. T., Wondie, G. B., & Marew, T. (2022). Different Nanotechnology Approaches for Ciprofloxacin Delivery Against Multidrug-Resistant Microbes. In Infection and Drug Resistance (Vol. 15, pp. 413–426). Dove Medical Press Ltd. https://doi.org/10.2147/IDR.S348643
Zhou, Y., Kong, Y., Kundu, S., Cirillo, J. D., & Liang, H. (2012). Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. Journal of Nanobiotechnology, 10. https://doi.org/10.1186/1477-3155-10-19