Studi Literatur Sensor Fluoresen Kompleks Logam Transisi Ditiokarbamat untuk Deteksi Ion Fosfat dalam Diagnostik Kanker
Keywords:
Diagnostik, Kanker, Logam Transisi, Fluoresen, DitiokarbamatAbstract
Deteksi ion fosfat yang akurat sangat penting dalam bidang diagnostik kanker karena berkaitan dengan metabolisme dan sinyal seluler tumor. Studi literatur review ini mengulas potensi kompleks ditiokarbamat logam transisi sebagai sensor fluoresen inovatif untuk deteksi ion fosfat. Metode yang dibahas meliputi desain sintetik kompleks logam dengan ligan ditiokarbamat yang memiliki kemampuan fluoresensi yang responsif terhadap keberadaan ion fosfat. Hasil studi menunjukkan bahwa kompleks ini dapat disesuaikan untuk meningkatkan selektivitas, sensitivitas, dan kompatibilitas biologis. Kompleks tersebut juga menunjukkan potensi integrasi dalam sistem diagnostik portabel dan point-of-care. Kesimpulannya, pendekatan ini menawarkan strategi menjanjikan untuk pengembangan alat diagnostik kanker yang lebih awal, sensitif, dan efisien, meskipun tantangan seperti toksisitas logam dan interferensi ion lain masih perlu ditangani.
References
Adeyemi, J. O., & Onwudiwe, D. C. (2020). The mechanisms of action involving dithiocarbamate complexes in biological systems. Inorganica Chimica Acta, 511, 119809. https://doi.org/10.1016/j.ica.2020.119809
Ahmed, A. J. (2018). Metal Complexes of Dithiocarbamate Derivatives and its Biological Activity. Asian Journal of Chemistry, 30(12), 2595. https://doi.org/10.14233/ajchem.2018.21545
Andrew, F. P., & Ajibade, P. A. (2017). Metal complexes of alkyl-aryl dithiocarbamates: Structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals. Journal of Molecular Structure, 1155, 843. https://doi.org/10.1016/j.molstruc.2017.10.106
B., A., Juan, M., & Sánchez‐Moreno, M. (2014). Metal-Based Therapeutics for Leishmaniasis. In InTech eBooks. https://doi.org/10.5772/57376
Bian, F., Sun, L., Cai, L., Wang, Y., & Zhao, Y. (2019). Quantum dots from microfluidics for nanomedical application [Review of Quantum dots from microfluidics for nanomedical application]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 11(5). Wiley. https://doi.org/10.1002/wnan.1567
Caravan, P. (2008). Metals in Medicine: Imaging Agents. In Wiley Encyclopedia of Chemical Biology (p. 1). https://doi.org/10.1002/9780470048672.wecb332
Chomitz, W. A., & Arnold, J. (2009). Use of Tetradentate Monoanionic Ligands for Stabilizing Reactive Metal Complexes. Chemistry - A European Journal, 15(9), 2020. https://doi.org/10.1002/chem.200801069
Choulier, L., & Enander, K. (2010). Environmentally Sensitive Fluorescent Sensors Based on Synthetic Peptides [Review of Environmentally Sensitive Fluorescent Sensors Based on Synthetic Peptides]. Sensors, 10(4), 3126. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/s100403126
Dhull, N., Kaur, G., Jain, P., Mishra, P., Singh, D., Ganju, L., Gupta, V., & Tomar, M. (2019). Label-free amperometric biosensor for Escherichia coli O157:H7 detection. Applied Surface Science, 495, 143548. https://doi.org/10.1016/j.apsusc.2019.143548
Ding, C., Zhu, A., & Tian, Y. (2013). Functional Surface Engineering of C-Dots for Fluorescent Biosensing and in Vivo Bioimaging [Review of Functional Surface Engineering of C-Dots for Fluorescent Biosensing and in Vivo Bioimaging]. Accounts of Chemical Research, 47(1), 20. American Chemical Society. https://doi.org/10.1021/ar400023s
Flora, S. J. S., & Pachauri, V. (2010). Chelation in Metal Intoxication [Review of Chelation in Metal Intoxication]. International Journal of Environmental Research and Public Health, 7(7), 2745. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijerph7072745
Gidwani, B., Sahu, V., Shukla, S. S., Pandey, R. K., Joshi, V., Jain, V., & Vyas, A. (2021). Quantum dots: Prospectives, toxicity, advances and applications. Journal of Drug Delivery Science and Technology, 61, 102308. https://doi.org/10.1016/j.jddst.2020.102308
Heidari, E. K., Marzbanrad, E., Zamani, C., & Raissi, B. (2009). Nanocasting Synthesis of Ultrafine WO3 Nanoparticles for Gas Sensing Applications. Nanoscale Research Letters, 5(2). https://doi.org/10.1007/s11671-009-9490-8
Iga, A. M., Robertson, J. H. P., Winslet, M. C., & Seifalian, A. M. (2007). Clinical Potential of Quantum Dots. Journal of Biomedicine and Biotechnology, 2007, 1. https://doi.org/10.1155/2007/76087
Khalafi, L., & Rafiee, M. (2013). Cyclodextrin Based Spectral Changes. In InTech eBooks. https://doi.org/10.5772/52824
Khan, S., Dunphy, A., Anike, M. S., Belperain, S., Patel, K., Chiu, N. H. L., & Jia, Z. (2021). Recent Advances in Carbon Nanodots: A Promising Nanomaterial for Biomedical Applications [Review of Recent Advances in Carbon Nanodots: A Promising Nanomaterial for Biomedical Applications]. International Journal of Molecular Sciences, 22(13), 6786. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijms22136786
Li, Z., Liu, C., Wang, J., Wang, S., Xiao, L., & Jing, X. (2019). A selective diaminomaleonitrile-based dual channel emissive probe for Al3+ and its application in living cell imaging. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 212, 349. https://doi.org/10.1016/j.saa.2019.01.031
Lippert, B. (2013). Uses of Metal Compounds in Medicine. In Elsevier eBooks. Elsevier BV. https://doi.org/10.1016/b978-0-12-409547-2.05375-0
Liu, J., Wang, Y., Yan, G., Yang, F., Gao, H., Huang, Y., Wang, H., Wang, P., Yang, L., Tang, Y., Teisl, L. R., & Sun, Y. (2018). Systematic Toxicity Evaluations of High-Performance Carbon “Quantum” Dots. Journal of Nanoscience and Nanotechnology, 19(4), 2130. https://doi.org/10.1166/jnn.2019.15807
Liu, X., & Luo, Y. (2014). Surface Modifications Technology of Quantum Dots Based Biosensors and Their Medical Applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY (CHINESE VERSION), 42(7), 1061. https://doi.org/10.1016/s1872-2040(14)60753-2
Ma, X., Wu, G., Zhao, Y., Yuan, Z., Zhang, Y., Xia, N., Yang, M., & Liu, L. (2018). A Turn-On Fluorescent Probe for Sensitive Detection of Cysteine in a Fully Aqueous Environment and in Living Cells. Journal of Analytical Methods in Chemistry, 2018, 1. https://doi.org/10.1155/2018/1986468
Mu, Y., Zhang, C.-J., Gao, Z., Zhang, X., Lu, Q., Yao, J., & Xing, S. (2020). A highly selective colorimetric, absorption and fluorescence probe for Al3+ detection based on a new Schiff base compound. Synthetic Metals, 262, 116334. https://doi.org/10.1016/j.synthmet.2020.116334
Mukherjee, A., & Sadler, P. J. (2009). Metals in Medicine: Therapeutic Agents. In Wiley Encyclopedia of Chemical Biology (p. 1). https://doi.org/10.1002/9780470048672.wecb333
Perfézou, M., Turner, A., & Merkoçi, A. (2011). Cancer detection using nanoparticle-based sensors [Review of Cancer detection using nanoparticle-based sensors]. Chemical Society Reviews, 41(7), 2606. Royal Society of Chemistry. https://doi.org/10.1039/c1cs15134g
Reichert, D. E., Lewis, J. S., & Anderson, C. J. (1999). Metal complexes as diagnostic tools. Coordination Chemistry Reviews, 184(1), 3. https://doi.org/10.1016/s0010-8545(98)00207-0
Sapsford, K. E., Pons, T., Medintz, I. L., & Mattoussi, H. (2006). Biosensing with Luminescent Semiconductor Quantum Dots. Sensors, 6(8), 925. https://doi.org/10.3390/s6080925
Singh, H., Bamrah, A., Bhardwaj, S. K., Deep, A., Khatri, M., Brown, R. J. C., Bhardwaj, N., & Kim, K. (2021). Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions. Environmental Science Nano, 8(4), 863. https://doi.org/10.1039/d0en00963f
Sivasankarapillai, V. S., Kirthi, A. V., Akksadha, M., Indu, S., Dharshini, U. D., Pushpamalar, J., & Karthik, L. (2020). Recent advancements in the applications of carbon nanodots: exploring the rising star of nanotechnology [Review of Recent advancements in the applications of carbon nanodots: exploring the rising star of nanotechnology]. Nanoscale Advances, 2(5), 1760. Royal Society of Chemistry. https://doi.org/10.1039/c9na00794f
Smith, A. M., & Nie, S. (2009). Next-generation quantum dots. Nature Biotechnology, 27(8), 732. https://doi.org/10.1038/nbt0809-732
Soufi, G. J., & Iravani, S. (2020). Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: current challenges and future perspectives. Green Chemistry, 22(9), 2662. https://doi.org/10.1039/d0gc00734j
Sóvágó, I., Kállay, C., & Várnagy, K. (2012). Peptides as complexing agents: Factors influencing the structure and thermodynamic stability of peptide complexes. Coordination Chemistry Reviews, 256, 2225. https://doi.org/10.1016/j.ccr.2012.02.026
Tóth, É., Helm, L., & Merbach, A. E. (2003). Metal Complexes as MRI Contrast Enhancement Agents. In Elsevier eBooks (p. 841). Elsevier BV. https://doi.org/10.1016/b0-08-043748-6/09007-1
Wang, N., Dai, T., & Lei, L. (2018). Optofluidic Technology for Water Quality Monitoring [Review of Optofluidic Technology for Water Quality Monitoring]. Micromachines, 9(4), 158. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/mi9040158
Yan, Y., Zhang, J., Ren, L., & Tang, C. (2016). Metal-containing and related polymers for biomedical applications [Review of Metal-containing and related polymers for biomedical applications]. Chemical Society Reviews, 45(19), 5232. Royal Society of Chemistry. https://doi.org/10.1039/c6cs00026f
Zhu, T., Xiong, J., Xue, Z., Su, Y., Sun, F., Chai, R., Xu, J., Feng, Y., & Meng, S. (2018). A novel amphiphilic fluorescent probe BODIPY–O-CMC–cRGD as a biomarker and nanoparticle vector. RSC Advances, 8(36), 20087. https://doi.org/10.1039/c8ra02125b
Zou, T., Lok, C., Wan, P., Zhang, Z., Fung, S.-K., & Che, C. (2017). Anticancer metal-N-heterocyclic carbene complexes of gold, platinum and palladium [Review of Anticancer metal-N-heterocyclic carbene complexes of gold, platinum and palladium]. Current Opinion in Chemical Biology, 43, 30. Elsevier BV. https://doi.org/10.1016/j.cbpa.2017.10.014